全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

A New Single-Step PCR Assay for the Detection of the Zoonotic Malaria Parasite Plasmodium knowlesi

DOI: 10.1371/journal.pone.0031848

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Recent studies in Southeast Asia have demonstrated substantial zoonotic transmission of Plasmodium knowlesi to humans. Microscopically, P. knowlesi exhibits several stage-dependent morphological similarities to P. malariae and P. falciparum. These similarities often lead to misdiagnosis of P. knowlesi as either P. malariae or P. falciparum and PCR-based molecular diagnostic tests are required to accurately detect P. knowlesi in humans. The most commonly used PCR test has been found to give false positive results, especially with a proportion of P. vivax isolates. To address the need for more sensitive and specific diagnostic tests for the accurate diagnosis of P. knowlesi, we report development of a new single-step PCR assay that uses novel genomic targets to accurately detect this infection. Methodology and Significant Findings We have developed a bioinformatics approach to search the available malaria parasite genome database for the identification of suitable DNA sequences relevant for molecular diagnostic tests. Using this approach, we have identified multi-copy DNA sequences distributed in the P. knowlesi genome. We designed and tested several novel primers specific to new target sequences in a single-tube, non-nested PCR assay and identified one set of primers that accurately detects P. knowlesi. We show that this primer set has 100% specificity for the detection of P. knowlesi using three different strains (Nuri, H, and Hackeri), and one human case of malaria caused by P. knowlesi. This test did not show cross reactivity with any of the four human malaria parasite species including 11 different strains of P. vivax as well as 5 additional species of simian malaria parasites. Conclusions The new PCR assay based on novel P. knowlesi genomic sequence targets was able to accurately detect P. knowlesi. Additional laboratory and field-based testing of this assay will be necessary to further validate its utility for clinical diagnosis of P. knowlesi.

References

[1]  Cox-Singh J, Davis TM, Lee KS, Shamsul SS, Matusop A, et al. (2008) Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis 46: 165–171.
[2]  Cox-Singh J, Hiu J, Lucas SB, Divis PC, Zulkarnaen M, et al. (2010) Severe malaria - a case of fatal Plasmodium knowlesi infection with post-mortem findings: a case report. Malar J 9: 10.
[3]  Singh B, Kim Sung L, Matusop A, Radhakrishnan A, Shamsul SS, et al. (2004) A large focus of naturally acquired Plasmodium knowlesi infections in human beings. Lancet 363: 1017–1024.
[4]  Jongwutiwes S, Buppan P, Kosuvin R, Seethamchai S, Pattanawong U, et al. (2011) Plasmodium knowlesi Malaria in humans and macaques, Thailand. Emerg Infect Dis 17: 1799–1806.
[5]  Jongwutiwes S, Putaporntip C, Iwasaki T, Sata T, Kanbara H (2004) Naturally acquired Plasmodium knowlesi malaria in human, Thailand. Emerg Infect Dis 10: 2211–2213.
[6]  Putaporntip C, Hongsrimuang T, Seethamchai S, Kobasa T, Limkittikul K, et al. (2009) Differential prevalence of Plasmodium infections and cryptic Plasmodium knowlesi malaria in humans in Thailand. J Infect Dis 199: 1143–1150.
[7]  Van den Eede P, Van HN, Van Overmeir C, Vythilingam I, Duc TN, et al. (2009) Human Plasmodium knowlesi infections in young children in central Vietnam. Malar J 8: 249.
[8]  Lee KS, Divis PC, Zakaria SK, Matusop A, Julin RA, et al. (2011) Plasmodium knowlesi: Reservoir Hosts and Tracking the Emergence in Humans and Macaques. PLoS Pathog 7: e1002015.
[9]  Tan CH, Vythilingam I, Matusop A, Chan ST, Singh B (2008) Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi. Malar J 7: 52.
[10]  Vythilingam I, Tan CH, Asmad M, Chan ST, Lee KS, et al. (2006) Natural transmission of Plasmodium knowlesi to humans by Anopheles latens in Sarawak, Malaysia. Trans R Soc Trop Med Hyg 100: 1087–1088.
[11]  Osman MM, Nour BY, Sedig MF, De Bes L, Babikir AM, et al. (2010) Informed decision-making before changing to RDT: a comparison of microscopy, rapid diagnostic test and molecular techniques for the diagnosis and identification of malaria parasites in Kassala, eastern Sudan. Trop Med Int Health 15: 1442–1448.
[12]  Khim N, Siv S, Kim S, Mueller T, Fleischmann E, et al. (2011) Plasmodium knowlesi infection in humans, Cambodia, 2007–2010. Emerg Infect Dis 17: 1900–1902.
[13]  Luchavez J, Espino F, Curameng P, Espina R, Bell D, et al. (2008) Human Infections with Plasmodium knowlesi, the Philippines. Emerg Infect Dis 14: 811–813.
[14]  Vythilingam I, Noorazian YM, Huat TC, Jiram AI, Yusri YM, et al. (2008) Plasmodium knowlesi in humans, macaques and mosquitoes in peninsular Malaysia. Parasit Vectors 1: 26.
[15]  Ng OT, Ooi EE, Lee CC, Lee PJ, Ng LC, et al. (2008) Naturally acquired human Plasmodium knowlesi infection, Singapore. Emerg Infect Dis 14: 814–816.
[16]  Collins WE (2012) Plasmodium knowlesi: A Malaria Parasite of Monkeys and Humans. Annu Rev Entomol 57: 107–121.
[17]  Eyles DE, Laing AB, Warren M, Sandosham AA (1962) Malaria parasites of Malayan leaf monkeys of the genus Presbytis. Med JMalaya 17: 85–86.
[18]  Eyles DE, Laing AB, Dobrovolny CG (1962) The malaria parasites of the pig-tailed macaque, Macaca nemestrina nemestrina (Linnaeus), in Malaya. Ind J Malariol 16: 285–298.
[19]  Coatneyi GR, Collins WE, Warren M, Contacos PG (1971) The Primate Malarias. Bethesda: U.S. National Institute of Allergy and Infectious Diseases. 381 p.
[20]  Berry A, Iriart X, Wilhelm N, Valentin A, Cassaing S, et al. (2011) Imported Plasmodium knowlesi Malaria in a French Tourist Returning from Thailand. Am J Trop Med Hyg 84: 535–538.
[21]  Hoosen A, Shaw MT (2011) Plasmodium knowlesi in a traveller returning to New Zealand. Travel Med Infect Dis.
[22]  Ta TT, Salas A, Ali-Tammam M, Martinez Mdel C, Lanza M, et al. (2010) First case of detection of Plasmodium knowlesi in Spain by Real Time PCR in a traveller from Southeast Asia. Malar J 9: 219.
[23]  Chin W, Contacos PG, Collins WE, Jeter MH, Alpert E (1968) Experimental mosquito-transmission of Plasmodium knowlesi to man and monkey. Am J Trop Med Hyg 17: 355–358.
[24]  Lee KS, Cox-Singh J, Singh B (2009) Morphological features and differential counts of Plasmodium knowlesi parasites in naturally acquired human infections. Malar J 8: 73.
[25]  Lee KS, Cox-Singh J, Brooke G, Matusop A, Singh B (2009) Plasmodium knowlesi from archival blood films: further evidence that human infections are widely distributed and not newly emergent in Malaysian Borneo. Int J Parasitol 39: 1125–1128.
[26]  Imwong M, Tanomsing N, Pukrittayakamee S, Day NP, White NJ, et al. (2009) Spurious amplification of a Plasmodium vivax small-subunit RNA gene by use of primers currently used to detect P. knowlesi. J Clin Microbiol 47: 4173–4175.
[27]  Daneshvar C, Davis TM, Cox-Singh J, Rafa'ee MZ, Zakaria SK, et al. (2009) Clinical and laboratory features of human Plasmodium knowlesi infection. Clin Infect Dis 49: 852–860.
[28]  Van den Eede P, Vythilingam I, Ngo DT, Nguyen VH, Le XH, et al. (2010) Plasmodium knowlesi malaria in Vietnam: some clarifications. Malar J 9: 20.
[29]  Cox-Singh J (2009) Knowlesi malaria in Vietnam. Malar J 8: 269.
[30]  Iseki H, Kawai S, Takahashi N, Hirai M, Tanabe K, et al. (2010) Evaluation of a loop-mediated isothermal amplification method as a tool for diagnosis of infection by the zoonotic simian malaria parasite Plasmodium knowlesi. J Clin Microbiol 48: 2509–2514.
[31]  Divis PC, Shokoples SE, Singh B, Yanow SK (2010) A TaqMan real-time PCR assay for the detection and quantitation of Plasmodium knowlesi. Malar J 9: 344.
[32]  Babady NE, Sloan LM, Rosenblatt JE, Pritt BS (2009) Detection of Plasmodium knowlesi by real-time polymerase chain reaction. Am J Trop Med Hyg 81: 516–518.
[33]  Demas A, Oberstaller J, Debarry J, Lucchi NW, Srinivasamoorthy G, et al. (2011) Applied genomics: Data mining reveals species-specific malaria diagnostic targets more sensitive than 18S rRNA. J Clin Microbiol 49: 2411–2418.
[34]  Johnston SP, Pieniazek NJ, Xayavong MV, Slemenda SB, Wilkins PP, et al. (2006) PCR as a confirmatory technique for laboratory diagnosis of malaria. J Clin Microbiol 44: 1087–1089.
[35]  (2009) Simian malaria in a U.S. traveler–New York, 2008. MMWR Morb Mortal Wkly Rep 58: 229–232.
[36]  Lapp SA, Korir CC, Galinski MR (2009) Redefining the expressed prototype SICAvar gene involved in Plasmodium knowlesi antigenic variation. Malar J 8: 181.
[37]  al-Khedery B, Barnwell JW, Galinski MR (1999) Antigenic variation in malaria: a 3′ genomic alteration associated with the expression of a P. knowlesi variant antigen. Mol Cell 3: 131–141.
[38]  Debarry JD, Kissinger JC (2011) Jumbled Genomes: Missing Apicomplexan Synteny. Mol Biol Evol 28: 2855–2811.
[39]  Gardner MJ, Hall N, Fung E, White O, Berriman M, et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498–511.
[40]  Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, et al. (2008) Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455: 757–763.
[41]  Sulistyaningsih E, Fitri LE, Loscher T, Berens-Riha N (2010) Diagnostic difficulties with Plasmodium knowlesi infection in humans. Emerg Infect Dis 16: 1033–1034.
[42]  Putaporntip C, Buppan P, Jongwutiwes S (2011) Improved performance with saliva and urine as alternative DNA sources for malaria diagnosis by mitochondrial DNA-based PCR assays. Clin Microbiol Infect 17: 1484–1491.
[43]  Ong CW, Lee SY, Koh WH, Ooi EE, Tambyah PA (2009) Monkey malaria in humans: a diagnostic dilemma with conflicting laboratory data. Am J Trop Med Hyg 80: 927–928.
[44]  Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19: 1639–1645.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133