Background Pneumococcal conjugate vaccines (PCV) reduce nasopharyngeal carriage of vaccine-serotype pneumococci but increase in the carriage of non-vaccine serotypes. We studied the epidemiology of carriage among children 3–59 months old before vaccine introduction in Kilifi, Kenya. Methods In a rolling cross-sectional study from October 2006 to December 2008 we approached 3570 healthy children selected at random from the population register of the Kilifi Health and Demographic Surveillance System and 134 HIV-infected children registered at a specialist clinic. A single nasopharyngeal swab was transported in STGG and cultured on gentamicin blood agar. A single colony of pneumococcus was serotyped by Quellung reaction. Results Families of 2840 children in the population-based sample and 99 in the HIV-infected sample consented to participate; carriage prevalence was 65.8% (95% CI, 64.0–67.5%) and 76% (95% CI, 66–84%) in the two samples, respectively. Carriage prevalence declined progressively with age from 79% at 6–11 months to 51% at 54–59 months (p<0.0005). Carriage was positively associated with coryza (Odds ratio 2.63, 95%CI 2.12–3.25) and cough (1.55, 95%CI 1.26–1.91) and negatively associated with recent antibiotic use (0.53 95%CI 0.34–0.81). 53 different serotypes were identified and 42% of isolates were of serotypes contained in the 10-valent PCV. Common serotypes declined in prevalence with age while less common serotypes did not. Conclusion Carriage prevalence in children was high, serotypes were diverse, and the majority of strains were of serotypes not represented in the 10-valent PCV. Vaccine introduction in Kenya will provide a natural test of virulence for the many circulating non-vaccine serotypes.
References
[1]
O'Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, et al. (2009) Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374: 893–902.
[2]
Berkley JA, Lowe BS, Mwangi I, Williams T, Bauni E, et al. (2005) Bacteremia among children admitted to a rural hospital in Kenya. N Engl J Med 352: 39–47.
[3]
O'Dempsey TJ, McArdle TF, Lloyd-Evans N, Baldeh I, Lawrence BE, et al. (1996) Pneumococcal disease among children in a rural area of West Africa. Pediatr Infect Dis J 15: 431–437.
[4]
Campbell JD, Kotloff KL, Sow SO, Tapia M, Keita MM, et al. (2004) Invasive pneumococcal infections among hospitalized children in Bamako, Mali. Pediatr Infect Dis J 23: 642–649.
[5]
Valles X, Flannery B, Roca A, Mandomando I, Sigauque B, et al. (2006) Serotype distribution and antibiotic susceptibility of invasive and nasopharyngeal isolates of Streptococcus pneumoniae among children in rural Mozambique. Trop Med Int Health 11: 358–366.
[6]
Abdullahi O, Nyiro J, Lewa P, Slack M, Scott JAG (2008) The descriptive epidemiology of Streptococcus pneumoniae and Haemophilus influenzae nasopharyngeal carriage in children and adults in Kilifi district, Kenya. Pediatr Infect Dis J 27: 59–64.
[7]
Hill PC, Cheung YB, Akisanya A, Sankareh K, Lahai G, et al. (2008) Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian infants: a longitudinal study. Clin Infect Dis 46: 807–814.
[8]
Yomo A, Subramanyam VR, Fudzulani R, Kamanga H, Graham SM, et al. (1997) Carriage of penicillin-resistant pneumococci in Malawian children. Ann Trop Paediatr 17: 239–243.
[9]
Hendley JO, Sande MA, Stewart PM, Gwaltney JMJ (1975) Spread of Streptococcus pneumoniae in families. I. Carriage rates and distribution of types. J Infect Dis 132: 55–61.
[10]
Hussain M, Melegaro A, Pebody RG, George R, Edmunds WJ, et al. (2005) A longitudinal household study of Streptococcus pneumoniae nasopharyngeal carriage in a UK setting. Epidemiol Infect 133: 891–898.
[11]
MMWR (2008) Invasive pneumococcal disease in children 5 years after conjugate vaccine introduction–eight states, 1998–2005. MMWR Morb Mortal Wkly Rep 57: 144–148.
[12]
Cutts FT, Zaman SMA, Enwere G, Jaffar S, Levine OS, et al. (2005) Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in The Gambia: randomised, double-blind, placebo-controlled trial. Lancet 365: 1139–1146.
[13]
Klugman KP, Madhi SA, Huebner RE, Kohberger R, Mbelle N, et al. (2003) A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N Engl J Med 349: 1341–1348.
[14]
World Health Organization (2010) Changing epidemiology of pneumococcal serotypes after introduction of conjugate vaccine: July 2010 report. Wkly Epidemiol Rec 85: 434–436.
[15]
Singleton RJ, Hennessy TW, Bulkow LR, Hammitt LL, Zulz T, et al. (2007) Invasive pneumococcal disease caused by nonvaccine serotypes among alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA 297: 1784–1792.
[16]
Scott JA, Bauni E, Moisi J, Ojal J, Nyaga V, et al. (2011) Cohort Profile: The Kilifi Health and Demographic Surveillance System. Submitted (Int J Epidemiol).
[17]
Abdullahi O, Karani A, Mugo D, Kung'u S, Wanjiru E, et al. (2011) The rates of acquisition and clearance of pneumococcal serotypes in the nasopharynges of children in Kilifi District, Kenya. Submitted (Clinical Infectious Diseases).
[18]
O'Brien KL, Nohynek H, The WHO Pneumococcal Vaccine Trials Carriage Working Group (2003) Report from a WHO working group: standard method for detecting upper respiratory carriage of Streptococcus pneumoniae. Pediatr Infect Dis J 22: 133–140.
[19]
Scott JAG, Ojal J, Ashton L, Muhoro A, Burbidge P, et al. (2011) Pneumococcal conjugate vaccine given shortly after birth stimulates effective antibody concentrations and primes immunological memory for sustained infant protection. Clin Infect Dis 53: 663–670.
[20]
Abdullahi O, Wanjiru E, Musyimi R, Glass N, Scott JAG (2007) Validation of nasopharyngeal sampling and culture techniques for detection of Streptococcus pneumoniae in children in Kenya. J Clin Microbiol 45: 3408–3410.
[21]
Hill PC, Townend J, Antonio M, Akisanya B, Ebruke C, et al. (2010) Transmission of Streptococcus pneumoniae in rural Gambian villages: a longitudinal study. Clin Infect Dis 50: 1468–1476.
[22]
Mastro TD, Nomani NK, Ishaq Z, Ghafoor A, Shaukat NF, et al. (1993) Use of nasopharyngeal isolates of Streptococcus pneumoniae and Haemophilus influenzae from children in Pakistan for surveillance for antimicrobial resistance. Pediatr Infect Dis J 12: 824–830.
[23]
Joloba ML, Bajaksouzian S, Palavecino E, Whalen C, Jacobs MR (2001) High prevalence of carriage of antibiotic-resistant Streptococcus pneumoniae in children in Kampala Uganda. Int J Antimicrob Agents 17: 395–400.
[24]
Lloyd-Evans N, O'Dempsey TJ, Baldeh I, Secka O, Demba E, et al. (1996) Nasopharyngeal carriage of pneumococci in Gambian children and in their families. Pediatr Infect Dis J 15: 866–871.
[25]
Feikin DR, Davis M, Nwanyanwu OC, Kazembe PN, Barat LM, et al. (2003) Antibiotic resistance and serotype distribution of Streptococcus pneumoniae colonizing rural Malawian children. Pediatr Infect Dis J 22: 564–567.
[26]
Rusen ID, Fraser-Roberts L, Slaney L, Ombette J, Lovgren M, et al. (1997) Nasopharyngeal pneumococcal colonization among Kenyan children: antibiotic resistance, strain types and associations with human immunodeficiency virus type 1 infection. Pediatr Infect Dis J 16: 656–662.
[27]
Hill PC, Akisanya A, Sankareh K, Cheung YB, Saaka M, et al. (2006) Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian villagers. Clin Infect Dis 43: 673–679.
[28]
Goldblatt D, Hussain M, Andrews N, Ashton L, Virta C, et al. (2005) Antibody responses to nasopharyngeal carriage of Streptococcus pneumoniae in adults: a longitudinal household study. J Infect Dis 192: 387–393.
[29]
Weinberger DM, Dagan R, Givon-Lavi N, Regev-Yochay G, Malley R, et al. (2008) Epidemiologic evidence for serotype-specific acquired immunity to pneumococcal carriage. J Infect Dis 197: 1511–1518.
[30]
McCool TL, Weiser JN (2004) Limited role of antibody in clearance of Streptococcus pneumoniae in a murine model of colonization. Infect Immun 72: 5807–5813.
[31]
Lipsitch M, Abdullahi O, D'Amour A, Xie W, Weinberger D, et al. (2011) Rates of carriage acquisition and clearance and competitive ability for pneumococcal serotypes in Kilifi District, Kenya: Application of a Markov transition model Submitted (Epidemiology).
[32]
Smillie WG, Caldwell EL (1929) A study of pneumonia in a rural area in Southern Alabama. J Exp Med 50: 233–244.
[33]
Straker E, Hill AB, Lovell R (1939) A study of the nasopharyngeal bacterial flora of different groups of persons observed in London and south-east England during the years 1930 to 1937.
[34]
Paul J (1997) Royal Society of Tropical Medicine and Hygiene Meeting at Manson House, London, 12 December 1996. HIV and pneumococcal infection in Africa. Microbiological aspects. Trans R Soc Trop Med Hyg 91: 632–637.
[35]
Nicoletti C, Brandileone MCC, Guerra MLS, Levin AS (2007) Prevalence, serotypes, and risk factors for pneumococcal carriage among HIV-infected adults. Diagn Microbiol Infect Dis 57: 259–265.
[36]
Scott JA, Berkley JA, Mwangi I, Ochola L, Uyoga S, et al. (2011) Relation between falciparum malaria and bacteraemia in Kenyan children: a population-based, case-control study and a longitudinal study. Lancet epub.
[37]
Sleeman KL, Griffiths D, Shackley F, Diggle L, Gupta S, et al. (2006) Capsular Serotype-Specific Attack Rates and Duration of Carriage of Streptococcus pneumoniae in a Population of Children. J Infect Dis 194: 682–688.
[38]
Mbelle N, Huebner RE, Wasas AD, Kimura A, Chang I, et al. (1999) Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J Infect Dis 180: 1171–1176.
[39]
Beall B, McEllistrem MC, Gertz REJ, Wedel S, Boxrud DJ, et al. (2006) Pre- and postvaccination clonal compositions of invasive pneumococcal serotypes for isolates collected in the United States in 1999, 2001, and 2002. J Clin Microbiol 44: 999–1017.
[40]
Byington CL, Samore MH, Stoddard GJ, Barlow S, Daly J, et al. (2005) Temporal trends of invasive disease due to Streptococcus pneumoniae among children in the intermountain west: emergence of nonvaccine serogroups.. Clin Infect Dis 41: 21–29.
[41]
Gonzalez BE, Hulten KG, Lamberth L, Kaplan SL, Mason EOJ (2006) Streptococcus pneumoniae serogroups 15 and 33: an increasing cause of pneumococcal infections in children in the United States after the introduction of the pneumococcal 7-valent conjugate vaccine. Pediatr Infect Dis J 25: 301–305.
[42]
Kaplan SL, Mason EOJ, Wald ER, Schutze GE, Bradley JS, et al. (2004) Decrease of invasive pneumococcal infections in children among 8 children's hospitals in the United States after the introduction of the 7-valent pneumococcal conjugate vaccine. Pediatrics 113: 443–449.
[43]
Miller E, Andrews N, Waight P, Slack M, George R (2011) Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study. Lancet Infect Dis 11: 760–768.
[44]
Steenhoff AP, Shah SS, Ratner AJ, Patil SM, McGowan KL (2006) Emergence of vaccine-related pneumococcal serotypes as a cause of bacteremia. Clin Infect Dis 42: 907–914.