|
物理学报 2007
Investigation on pumping dynamics and pulsed energy storage performance of Yb ions
|
Abstract:
Based on the energy structure of quasi-three-level Yb-ion, the pumping and lasing rate equations are set up. The pumping dynamics of Yb-ion is investigated analytically and numerically, which includes the pumping excitation efficiency, the minimum pumping intensity, and the stored energy extraction efficiency. The laser performances of three typical Yb-doped laser materials are compared, i.e., Yb:S-FAP, Yb:YAG and Yb:FP-glass. Based on the criterion of amplified spontaneous emission (ASE), the design principles of pulsed energy-storage Yb lasers are investigated specifically, which includes the optimum thickness and doping concentration of the gain medium. Finally, based on our model, the baseline parameters are presented for a 100J-class diode-pumped solid-state laser based on either Yb:S-FAP or Yb:YAG. This paper would be helpful for designing the pulsed energy-storage Yb-based DPSS lasers.