全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Identification of Estrogen Receptor Dimer Selective Ligands Reveals Growth-Inhibitory Effects on Cells That Co-Express ERα and ERβ

DOI: 10.1371/journal.pone.0030993

Full-Text   Cite this paper   Add to My Lib

Abstract:

Estrogens play essential roles in the progression of mammary and prostatic diseases. The transcriptional effects of estrogens are transduced by two estrogen receptors, ERα and ERβ, which elicit opposing roles in regulating proliferation: ERα is proliferative while ERβ is anti-proliferative. Exogenous expression of ERβ in ERα-positive cancer cell lines inhibits cell proliferation in response to estrogen and reduces xenografted tumor growth in vivo, suggesting that ERβ might oppose ERα's proliferative effects via formation of ERα/β heterodimers. Despite biochemical and cellular evidence of ERα/β heterodimer formation in cells co-expressing both receptors, the biological roles of the ERα/β heterodimer remain to be elucidated. Here we report the identification of two phytoestrogens that selectively activate ERα/β heterodimers at specific concentrations using a cell-based, two-step high throughput small molecule screen for ER transcriptional activity and ER dimer selectivity. Using ERα/β heterodimer-selective ligands at defined concentrations, we demonstrate that ERα/β heterodimers are growth inhibitory in breast and prostate cells which co-express the two ER isoforms. Furthermore, using Automated Quantitative Analysis (AQUA) to examine nuclear expression of ERα and ERβ in human breast tissue microarrays, we demonstrate that ERα and ERβ are co-expressed in the same cells in breast tumors. The co-expression of ERα and ERβ in the same cells supports the possibility of ERα/β heterodimer formation at physio- and pathological conditions, further suggesting that targeting ERα/β heterodimers might be a novel therapeutic approach to the treatment of cancers which co-express ERα and ERβ.

References

[1]  Heldring N, Pike A, Andersson S, Matthews J, Cheng G, et al. (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87: 905–931.
[2]  Deroo BJ, Korach KS (2006) Estrogen receptors and human disease. J Clin Invest 116: 561–570.
[3]  Nilsson S, Gustafsson JA (2011) Estrogen receptors: therapies targeted to receptor subtypes. Clin Pharmacol Ther 89: 44–55.
[4]  Shoker BS, Jarvis C, Sibson DR, Walker C, Sloane JP (1999) Oestrogen receptor expression in the normal and pre-cancerous breast. J Pathol 188: 237–244.
[5]  Hewitt SC, Harrell JC, Korach KS (2005) Lessons in estrogen biology from knockout and transgenic animals. Annu Rev Physiol 67: 285–308.
[6]  Forster C, Makela S, Warri A, Kietz S, Becker D, et al. (2002) Involvement of estrogen receptor beta in terminal differentiation of mammary gland epithelium. Proc Natl Acad Sci U S A 99: 15578–15583.
[7]  McPherson SJ, Ellem SJ, Patchev V, Fritzemeier KH, Risbridger GP (2006) The role of Eralpha and ERbeta in the prostate: insights from genetic models and isoform-selective ligands. Ernst Schering Found Symp Proc 131–147.
[8]  Imamov O, Morani A, Shim GJ, Omoto Y, Thulin-Andersson C, et al. (2004) Estrogen receptor beta regulates epithelial cellular differentiation in the mouse ventral prostate. Proc Natl Acad Sci U S A 101: 9375–9380.
[9]  Ricke WA, McPherson SJ, Bianco JJ, Cunha GR, Wang Y, et al. (2008) Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor alpha signaling. FASEB J 22: 1512–1520.
[10]  Krege JH, Hodgin JB, Couse JF, Enmark E, Warner M, et al. (1998) Generation and reproductive phenotypes of mice lacking estrogen receptor beta. Proc Natl Acad Sci U S A 95: 15677–15682.
[11]  Jarvinen TA, Pelto-Huikko M, Holli K, Isola J (2000) Estrogen receptor beta is coexpressed with ERalpha and PR and associated with nodal status, grade, and proliferation rate in breast cancer. Am J Pathol 156: 29–35.
[12]  Zhu X, Leav I, Leung YK, Wu M, Liu Q, et al. (2004) Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol 164: 2003–2012.
[13]  Chang EC, Frasor J, Komm B, Katzenellenbogen BS (2006) Impact of estrogen receptor beta on gene networks regulated by estrogen receptor alpha in breast cancer cells. Endocrinology 147: 4831–4842.
[14]  Helguero LA, Faulds MH, Gustafsson JA, Haldosen LA (2005) Estrogen receptors alfa (ERalpha) and beta (ERbeta) differentially regulate proliferation and apoptosis of the normal murine mammary epithelial cell line HC11. Oncogene 24: 6605–6616.
[15]  Pettersson K, Delaunay F, Gustafsson JA (2000) Estrogen receptor beta acts as a dominant regulator of estrogen signaling. Oncogene 19: 4970–4978.
[16]  Lazennec G, Bresson D, Lucas A, Chauveau C, Vignon F (2001) ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology 142: 4120–4130.
[17]  Murphy LC, Peng B, Lewis A, Davie JR, Leygue E, et al. (2005) Inducible upregulation of oestrogen receptor-beta1 affects oestrogen and tamoxifen responsiveness in MCF7 human breast cancer cells. J Mol Endocrinol 34: 553–566.
[18]  Rousseau C, Nichol JN, Pettersson F, Couture MC, Miller WH Jr (2004) ERbeta sensitizes breast cancer cells to retinoic acid: evidence of transcriptional crosstalk. Mol Cancer Res 2: 523–531.
[19]  Strom A, Hartman J, Foster JS, Kietz S, Wimalasena J, et al. (2004) Estrogen receptor beta inhibits 17beta-estradiol-stimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci U S A 101: 1566–1571.
[20]  Omoto Y, Inoue S, Ogawa S, Toyama T, Yamashita H, et al. (2001) Clinical value of the wild-type estrogen receptor beta expression in breast cancer. Cancer Lett 163: 207–212.
[21]  Skliris GP, Carder PJ, Lansdown MR, Speirs V (2001) Immunohistochemical detection of ERbeta in breast cancer: towards more detailed receptor profiling? Br J Cancer 84: 1095–1098.
[22]  Roger P, Sahla ME, Makela S, Gustafsson JA, Baldet P, et al. (2001) Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. Cancer Res 61: 2537–2541.
[23]  Iwao K, Miyoshi Y, Egawa C, Ikeda N, Tsukamoto F, et al. (2000) Quantitative analysis of estrogen receptor-alpha and -beta messenger RNA expression in breast carcinoma by real-time polymerase chain reaction. Cancer 89: 1732–1738.
[24]  Iwao K, Miyoshi Y, Egawa C, Ikeda N, Noguchi S (2000) Quantitative analysis of estrogen receptor-beta mRNA and its variants in human breast cancers. Int J Cancer 88: 733–736.
[25]  Paruthiyil S, Parmar H, Kerekatte V, Cunha GR, Firestone GL, et al. (2004) Estrogen receptor beta inhibits human breast cancer cell proliferation and tumor formation by causing a G2 cell cycle arrest. Cancer Res 64: 423–428.
[26]  Williams C, Edvardsson K, Lewandowski SA, Strom A, Gustafsson JA (2008) A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene 27: 1019–1032.
[27]  Frasor J, Chang EC, Komm B, Lin CY, Vega VB, et al. (2006) Gene expression preferentially regulated by tamoxifen in breast cancer cells and correlations with clinical outcome. Cancer Res 66: 7334–7340.
[28]  Chang EC, Charn TH, Park SH, Helferich WG, Komm B, et al. (2008) Estrogen Receptors alpha and beta as determinants of gene expression: influence of ligand, dose, and chromatin binding. Mol Endocrinol 22: 1032–1043.
[29]  Saji S, Hirose M, Toi M (2005) Clinical significance of estrogen receptor beta in breast cancer. Cancer Chemother Pharmacol 56: Suppl 121–26.
[30]  Lindberg MK, Moverare S, Skrtic S, Gao H, Dahlman-Wright K, et al. (2003) Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, supporting a “ying yang” relationship between ERalpha and ERbeta in mice. Mol Endocrinol 17: 203–208.
[31]  Cowley SM, Hoare S, Mosselman S, Parker MG (1997) Estrogen receptors alpha and beta form heterodimers on DNA. J Biol Chem 272: 19858–19862.
[32]  Pettersson K, Grandien K, Kuiper GG, Gustafsson JA (1997) Mouse estrogen receptor beta forms estrogen response element-binding heterodimers with estrogen receptor alpha. Mol Endocrinol 11: 1486–1496.
[33]  Tremblay GB, Tremblay A, Labrie F, Giguere V (1999) Dominant activity of activation function 1 (AF-1) and differential stoichiometric requirements for AF-1 and -2 in the estrogen receptor alpha-beta heterodimeric complex. Mol Cell Biol 19: 1919–1927.
[34]  Powell E, Xu W (2008) Intermolecular interactions identify ligand-selective activity of estrogen receptor alpha/beta dimers. Proc Natl Acad Sci U S A 105: 19012–19017.
[35]  Powell E, Huang SX, Xu Y, Rajski SR, Wang Y, et al. (2010) Identification and Characterization of a Novel Estrogenic Ligand Actinopolymorphol A. Biochem Pharmacol 80: 1221–1229.
[36]  Lau KM, LaSpina M, Long J, Ho SM (2000) Expression of estrogen receptor (ER)-alpha and ER-beta in normal and malignant prostatic epithelial cells: regulation by methylation and involvement in growth regulation. Cancer Res 60: 3175–3182.
[37]  Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63.
[38]  Monroe DG, Secreto FJ, Subramaniam M, Getz BJ, Khosla S, et al. (2005) Estrogen receptor alpha and beta heterodimers exert unique effects on estrogen- and tamoxifen-dependent gene expression in human U2OS osteosarcoma cells. Mol Endocrinol 19: 1555–1568.
[39]  Stossi F, Barnett DH, Frasor J, Komm B, Lyttle CR, et al. (2004) Transcriptional profiling of estrogen-regulated gene expression via estrogen receptor (ER) alpha or ERbeta in human osteosarcoma cells: distinct and common target genes for these receptors. Endocrinology 145: 3473–3486.
[40]  Aherne SA, O'Brien NM (2002) Dietary flavonols: chemistry, food content, and metabolism. Nutrition 18: 75–81.
[41]  Heinonen SM, Wahala K, Adlercreutz H (2004) Identification of urinary metabolites of the red clover isoflavones formononetin and biochanin A in human subjects. J Agric Food Chem 52: 6802–6809.
[42]  Pfitscher A, Reiter E, Jungbauer A (2008) Receptor binding and transactivation activities of red clover isoflavones and their metabolites. J Steroid Biochem Mol Biol 112: 87–94.
[43]  Fuchs J, Milbradt R (1993) Skin anti-inflammatory activity of apigenin-7-glucoside in rats. Arzneimittelforschung 43: 370–372.
[44]  Wang HK, Xia Y, Yang ZY, Natschke SL, Lee KH (1998) Recent advances in the discovery and development of flavonoids and their analogues as antitumor and anti-HIV agents. Adv Exp Med Biol 439: 191–225.
[45]  Wu X, Hawse JR, Subramaniam M, Goetz MP, Ingle JN, et al. (2009) The tamoxifen metabolite, endoxifen, is a potent antiestrogen that targets estrogen receptor alpha for degradation in breast cancer cells. Cancer Res 69: 1722–1727.
[46]  Wu X, Subramaniam M, Grygo SB, Sun Z, Negron V, et al. (2011) Estrogen receptor-beta sensitizes breast cancer cells to the anti-estrogenic actions of endoxifen. Breast Cancer Res 13: R27.
[47]  Peeters PH, Keinan-Boker L, van der Schouw YT, Grobbee DE (2003) Phytoestrogens and breast cancer risk. Review of the epidemiological evidence. Breast Cancer Res Treat 77: 171–183.
[48]  Ju YH, Allred KF, Allred CD, Helferich WG (2006) Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations. Carcinogenesis 27: 1292–1299.
[49]  Mentor-Marcel R, Lamartiniere CA, Eltoum IA, Greenberg NM, Elgavish A (2005) Dietary genistein improves survival and reduces expression of osteopontin in the prostate of transgenic mice with prostatic adenocarcinoma (TRAMP). J Nutr 135: 989–995.
[50]  Jones SB, DePrimo SE, Whitfield ML, Brooks JD (2005) Resveratrol-induced gene expression profiles in human prostate cancer cells. Cancer Epidemiol Biomarkers Prev 14: 596–604.
[51]  Lee MM, Gomez SL, Chang JS, Wey M, Wang RT, et al. (2003) Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiol Biomarkers Prev 12: 665–668.
[52]  Sugiura H, Toyama T, Hara Y, Zhang Z, Kobayashi S, et al. (2007) Expression of estrogen receptor beta wild-type and its variant ERbetacx/beta2 is correlated with better prognosis in breast cancer. Jpn J Clin Oncol 37: 820–828.
[53]  Grober OM, Mutarelli M, Giurato G, Ravo M, Cicatiello L, et al. (2011) Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation. BMC Genomics 12: 36.
[54]  Wilson VS, Bobseine K, Gray LE Jr (2004) Development and characterization of a cell line that stably expresses an estrogen-responsive luciferase reporter for the detection of estrogen receptor agonist and antagonists. Toxicol Sci 81: 69–77.
[55]  Warren M, Twohig M, Pier T, Eickhoff J, Lin CY, et al. (2009) Protein expression of matriptase and its cognate inhibitor HAI-1 in human prostate cancer: a tissue microarray and automated quantitative analysis. Appl Immunohistochem Mol Morphol 17: 23–30.
[56]  Gustavson MD, Bourke-Martin B, Reilly DM, Cregger M, Williams C, et al. (2009) Development of an unsupervised pixel-based clustering algorithm for compartmentalization of immunohistochemical expression using Automated QUantitative Analysis. Appl Immunohistochem Mol Morphol 17: 329–337.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133