Loss-of-function mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene have been identified in patients with heritable pulmonary arterial hypertension (PAH); however, disease penetrance is low, suggesting additional factors play a role. Inflammation is associated with PAH and vascular remodeling, but whether allergic inflammation triggers vascular remodeling in individuals with BMPR2 mutations is unknown. Our goal was to determine if chronic allergic inflammation would induce more severe vascular remodeling and PAH in mice with reduced BMPR-II signaling. Groups of Bmpr2 hypomorph and wild-type (WT) Balb/c/Byj mice were exposed to house dust mite (HDM) allergen, intranasally for 7 or 20 weeks to generate a model of chronic inflammation. HDM exposure induced similar inflammatory cell counts in all groups compared to controls. Muscularization of pulmonary arterioles and arterial wall thickness were increased after 7 weeks HDM, more severe at 20 weeks, but similar in both groups. Right ventricular systolic pressure (RVSP) was measured by direct cardiac catheterization to assess PAH. RVSP was similarly increased in both HDM exposed groups after 20 weeks compared to controls, but not after 7 weeks. Airway hyperreactivity (AHR) to methacholine was also assessed and interestingly, at 20 weeks, was more severe in HDM exposed Bmpr2 hypomorph mice versus WT. We conclude that chronic allergic inflammation caused PAH and while the severity was mild and similar between WT and Bmpr2 hypomorph mice, AHR was enhanced with reduced BMPR-II signaling. These data suggest that vascular remodeling and PAH resulting from chronic allergic inflammation occurs independently of BMPR-II pathway alterations.
References
[1]
Cogan JD, Pauciulo MW, Batchman AP, Prince MA, Robbins IM, et al. (2006) High frequency of BMPR2 exonic deletions/duplications in familial pulmonary arterial hypertension. Am J Respir Crit Care Med 174: 590–598.
[2]
Crosswhite P, Sun Z (2010) Nitric oxide, oxidative stress and inflammation in pulmonary arterial hypertension. J Hypertens 28: 201–212.
[3]
Daley E, Emson C, Guignabert C, de Waal Malefyt R, Louten J, et al. (2008) Pulmonary arterial remodeling induced by a Th2 immune response. J Exp Med 205: 361–372.
[4]
Davies RJ, Morrell NW (2008) Molecular mechanisms of pulmonary arterial hypertension: role of mutations in the bone morphogenetic protein type II receptor. Chest 134: 1271–1277.
[5]
Sztrymf B, Coulet F, Girerd B, Yaici A, Jais X, et al. (2008) Clinical outcomes of pulmonary arterial hypertension in carriers of BMPR2 mutation. Am J Respir Crit Care Med 177: 1377–1383.
[6]
Aldred MA, Machado RD, James V, Morrell NW, Trembath RC (2007) Characterization of the BMPR2 5′-untranslated region and a novel mutation in pulmonary hypertension. Am J Respir Crit Care Med 176: 819–824.
[7]
Rabinovitch M (2008) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 118: 2372–2379.
Strange JW, Wharton J, Phillips PG, Wilkins MR (2002) Recent insights into the pathogenesis and therapeutics of pulmonary hypertension. Clinical science 102: 253–268.
[10]
Widlitz A, Barst RJ (2003) Pulmonary arterial hypertension in children. Eur Respir J 21: 155–176.
[11]
Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, et al. (2000) Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 67: 737–744.
[12]
Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd, et al. (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 26: 81–84.
[13]
Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, et al. (2009) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 54: S43–54.
[14]
Newman JH, Wheeler L, Lane KB, Loyd E, Gaddipati R, et al. (2001) Mutation in the gene for bone morphogenetic protein receptor II as a cause of primary pulmonary hypertension in a large kindred. N Engl J Med 345: 319–324.
[15]
Machado RD, Aldred MA, James V, Harrison RE, Patel B, et al. (2006) Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Human mutation 27: 121–132.
[16]
Chen D, Zhao M, Harris SE, Mi Z (2004) Signal transduction and biological functions of bone morphogenetic proteins. Front Biosci 9: 349–358.
[17]
Hassel S, Schmitt S, Hartung A, Roth M, Nohe A, et al. (2003) Initiation of Smad-dependent and Smad-independent signaling via distinct BMP-receptor complexes. J Bone Joint Surg Am 85-A: Suppl 344–51.
[18]
Nohe A, Keating E, Knaus P, Petersen NO (2004) Signal transduction of bone morphogenetic protein receptors. Cellular signalling 16: 291–299.
[19]
Yamashita H, Ten Dijke P, Heldin CH, Miyazono K (1996) Bone morphogenetic protein receptors. Bone 19: 569–574.
[20]
Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, et al. (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54: S10–19.
[21]
Voelkel NF, Tuder RM, Bridges J, Arend WP (1994) Interleukin-1 receptor antagonist treatment reduces pulmonary hypertension generated in rats by monocrotaline. Am J Respir Cell Mol Biol 11: 664–675.
[22]
Humbert M, Monti G, Brenot F, Sitbon O, Portier A, et al. (1995) Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 151: 1628–1631.
[23]
Burke DL, Frid MG, Kunrath CL, Karoor V, Anwar A, et al. (2009) Sustained hypoxia promotes the development of a pulmonary artery-specific chronic inflammatory microenvironment. American journal of physiology Lung cellular and molecular physiology 297: L238–250.
[24]
Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF (2009) Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 297: L1013–1032.
[25]
Ito T, Okada T, Miyashita H, Nomoto T, Nonaka-Sarukawa M, et al. (2007) Interleukin-10 expression mediated by an adeno-associated virus vector prevents monocrotaline-induced pulmonary arterial hypertension in rats. Circ Res 101: 734–741.
[26]
Song Y, Coleman L, Shi J, Beppu H, Sato K, et al. (2008) Inflammation, endothelial injury, and persistent pulmonary hypertension in heterozygous BMPR2-mutant mice. Am J Physiol Heart Circ Physiol 295: H677–690.
[27]
Rydell-Tormanen K, Johnson JR, Fattouh R, Jordana M, Erjefalt JS (2008) Induction of vascular remodeling in the lung by chronic house dust mite exposure. Am J Respir Cell Mol Biol 39: 61–67.
[28]
Tormanen KR, Uller L, Persson CG, Erjefalt JS (2005) Allergen exposure of mouse airways evokes remodeling of both bronchi and large pulmonary vessels. Am J Respir Crit Care Med 171: 19–25.
[29]
Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, et al. (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Developmental biology 221: 249–258.
[30]
Delot EC, Bahamonde ME, Zhao M, Lyons KM (2003) BMP signaling is required for septation of the outflow tract of the mammalian heart. Development 130: 209–220.
[31]
Kariyawasam HH, Xanthou G, Barkans J, Aizen M, Kay AB, et al. (2008) Basal expression of bone morphogenetic protein receptor is reduced in mild asthma. Am J Respir Crit Care Med 177: 1074–1081.
[32]
Voelkel NF, Tuder RM, Wade K, Hoper M, Lepley RA, et al. (1996) Inhibition of 5-lipoxygenase-activating protein (FLAP) reduces pulmonary vascular reactivity and pulmonary hypertension in hypoxic rats. J Clin Invest 97: 2491–2498.
[33]
Wright L, Tuder RM, Wang J, Cool CD, Lepley RA, et al. (1998) 5-Lipoxygenase and 5-lipoxygenase activating protein (FLAP) immunoreactivity in lungs from patients with primary pulmonary hypertension. Am J Respir Crit Care Med 157: 219–229.
[34]
Song Y, Jones JE, Beppu H, Keaney JF Jr, Loscalzo J, et al. (2005) Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice. Circulation 112: 553–562.
[35]
Long L, MacLean MR, Jeffery TK, Morecroft I, Yang X, et al. (2006) Serotonin increases susceptibility to pulmonary hypertension in BMPR2-deficient mice. Circulation research 98: 818–827.
[36]
Johnson JR, Swirski FK, Gajewska BU, Wiley RE, Fattouh R, et al. (2007) Divergent immune responses to house dust mite lead to distinct structural-functional phenotypes. Am J Physiol Lung Cell Mol Physiol 293: L730–739.
[37]
Johnson JR, Wiley RE, Fattouh R, Swirski FK, Gajewska BU, et al. (2004) Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med 169: 378–385.
[38]
Barnes PJ (2008) Immunology of asthma and chronic obstructive pulmonary disease. Nature reviews Immunology 8: 183–192.
[39]
Barrett NA, Austen KF (2009) Innate cells and T helper 2 cell immunity in airway inflammation. Immunity 31: 425–437.
[40]
Finkelman FD, Hogan SP, Hershey GK, Rothenberg ME, Wills-Karp M (2010) Importance of cytokines in murine allergic airway disease and human asthma. J Immunol 184: 1663–1674.
[41]
Johnson JR, Roos A, Berg T, Nord M, Fuxe J (2011) Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways. PloS one 6: e16175.
[42]
Llop-Guevara A, Colangelo M, Chu DK, Moore CL, Stieber NA, et al. (2008) In vivo-to-in silico iterations to investigate aeroallergen-host interactions. PloS one 3: e2426.
[43]
Balabanian K, Foussat A, Dorfmuller P, Durand-Gasselin I, Capel F, et al. (2002) CX(3)C chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med 165: 1419–1425.
[44]
Tuder RM, Voelkel NF (1998) Pulmonary hypertension and inflammation. J Lab Clin Med 132: 16–24.
[45]
Crosby A, Jones FM, Southwood M, Stewart S, Schermuly R, et al. (2010) Pulmonary vascular remodeling correlates with lung eggs and cytokines in murine schistosomiasis. Am J Respir Crit Care Med 181: 279–288.
[46]
Blacquiere MJ, Hylkema MN, Postma DS, Geerlings M, Timens W, et al. (2010) Airway inflammation and remodeling in two mouse models of asthma: comparison of males and females. Int Arch Allergy Immunol 153: 173–181.
[47]
Kelada SN, Wilson MS, Tavarez U, Kubalanza K, Borate B, et al. (2011) Strain-dependent genomic factors affect allergen-induced airway hyperresponsiveness in mice. Am J Respir Cell Mol Biol 45: 817–824.
[48]
Rothman A, Kulik TJ (1989) Pulmonary hypertension and asthma in two patients with congenital heart disease. American journal of diseases of children 143: 977–979.
[49]
Kramer EL, Mushaben EM, Pastura PA, Acciani TH, Deutsch GH, et al. (2009) Early growth response-1 suppresses epidermal growth factor receptor-mediated airway hyperresponsiveness and lung remodeling in mice. Am J Respir Cell Mol Biol 41: 415–425.
[50]
Zhang X, Lewkowich IP, Kohl G, Clark JR, Wills-Karp M, et al. (2009) A protective role for C5a in the development of allergic asthma associated with altered levels of B7-H1 and B7-DC on plasmacytoid dendritic cells. J Immunol 182: 5123–5130.
[51]
Le Cras TD, Hardie WD, Deutsch GH, Albertine KH, Ikegami M, et al. (2004) Transient induction of TGF-alpha disrupts lung morphogenesis, causing pulmonary disease in adulthood. Am J Physiol Lung Cell Mol Physiol 287: L718–729.
[52]
Le Cras TD, Fernandez LG, Pastura PA, Laubach VE (2005) Vascular growth and remodeling in compensatory lung growth following right lobectomy. J Appl Physiol 98: 1140–1148.
[53]
McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, et al. (2011) Efficacy and safety of sirolimus in lymphangioleiomyomatosis. The New England journal of medicine 364: 1595–1606.