全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Genetic Structure, Linkage Disequilibrium and Signature of Selection in Sorghum: Lessons from Physically Anchored DArT Markers

DOI: 10.1371/journal.pone.0033470

Full-Text   Cite this paper   Add to My Lib

Abstract:

Population structure, extent of linkage disequilibrium (LD) as well as signatures of selection were investigated in sorghum using a core sample representative of worldwide diversity. A total of 177 accessions were genotyped with 1122 informative physically anchored DArT markers. The properties of DArTs to describe sorghum genetic structure were compared to those of SSRs and of previously published RFLP markers. Model-based (STRUCTURE software) and Neighbor-Joining diversity analyses led to the identification of 6 groups and confirmed previous evolutionary hypotheses. Results were globally consistent between the different marker systems. However, DArTs appeared more robust in terms of data resolution and bayesian group assignment. Whole genome linkage disequilibrium as measured by mean r2 decreased from 0.18 (between 0 to 10 kb) to 0.03 (between 100 kb to 1 Mb), stabilizing at 0.03 after 1 Mb. Effects on LD estimations of sample size and genetic structure were tested using i. random sampling, ii. the Maximum Length SubTree algorithm (MLST), and iii. structure groups. Optimizing population composition by the MLST reduced the biases in small samples and seemed to be an efficient way of selecting samples to make the best use of LD as a genome mapping approach in structured populations. These results also suggested that more than 100,000 markers may be required to perform genome-wide association studies in collections covering worldwide sorghum diversity. Analysis of DArT markers differentiation between the identified genetic groups pointed out outlier loci potentially linked to genes controlling traits of interest, including disease resistance genes for which evidence of selection had already been reported. In addition, evidence of selection near a homologous locus of FAR1 concurred with sorghum phenotypic diversity for sensitivity to photoperiod.

References

[1]  Zhu C, Gore M, Buckler ES, Yu J (2008) Status and Prospects of Association Mapping in Plants. The Plant Genome 1: 5–20.
[2]  Ingvarsson PK, Street NR (2011) Association genetics of complex traits in plants. New Phytol 189: 909–922.
[3]  Salas Fernandez MG, Becraft PW, Yin Y, Lübberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends in Plant Science 14: 454–461.
[4]  Vermerris W (2011) Survey of genomics approaches to improve bioenergy traits in maize, sorghum and sugarcane. J Integr Plant Biol 53: 105–119.
[5]  Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457: 551–556.
[6]  Deu M, Rattunde H, Chantereau J (2006) A global view of genetic diversity in cultivated sorghums using a core collection. Genome 49: 168–180.
[7]  Caniato FF, Guimaraes CT, Hamblin M, Billot C, Rami JF, et al. (2011) The Relationship between Population Structure and Aluminum Tolerance in Cultivated Sorghum. PLoS One 6: e20830.
[8]  Casa A, Pressoir G, Brown P, Mitchell S, Rooney W, et al. (2008) Community Resources and Strategies for Association Mapping in Sorghum. Crop Sci 48: 30–40.
[9]  Brown P, Myles S, Kresovich S (2011) Genetic Support for Phenotype-based Racial Classification in Sorghum. Crop Science 51: 224–230.
[10]  Stephens JC, Miller FR, Rosenow DT (1967) Conversion of Alien Sorghums to Early Combine Genotypes. Crop Science 7: 396.
[11]  Hamblin MT, Mitchell SE, White GM, Gallego J, Kukatla R, et al. (2004) Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium and selection in a diverse sample of Sorghum bicolor. Genetics 167: 471–483.
[12]  Hamblin MT, Salas Fernandez MG, Casa AM, Mitchell SE, Paterson AH, et al. (2005) Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171: 1247–1256.
[13]  Hamblin MT, Casa AM, Sun H, Murray SC, Paterson AH, et al. (2006) Challenges of detecting directional selection after a bottleneck: lessons from Sorghum bicolor. Genetics 173: 953–964.
[14]  Hamblin MT, Salas Fernandez MG, Tuinstra MR, Rooney WL, Kresovich S (2007) Sequence Variation at Candidate Loci in the Starch Metabolism Pathway in Sorghum: Prospects for Linkage Disequilibrium Mapping. Crop Sci 47: S-125–134.
[15]  Frere CH, Prentis PJ, Gilding EK, Mudge AM, Cruickshank A, et al. (2011) Lack of Low Frequency Variants Masks Patterns of Non-Neutral Evolution following Domestication. Plos One 6:
[16]  Casa AM, Mitchell SE, Hamblin MT, Sun H, Bowers JE, et al. (2005) Diversity and selection in sorghum: simultaneous analyses using simple sequence repeats. Theor Appl Genet 111: 23–30.
[17]  de Alencar Figueiredo LF, Calatayud C, Dupuits C, Billot C, Rami JF, et al. (2008) Phylogeographic evidence of crop neodiversity in sorghum. Genetics 179: 997–1008.
[18]  Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29: E25.
[19]  Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, et al. (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9: 13.
[20]  Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, et al. (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genomics 9: 26.
[21]  de Alencar Figueiredo LF, Sine B, Chantereau J, Mestres C, Fliedel G, et al. (2010) Variability of grain quality in sorghum: association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2. Theor Appl Genet 121: 1171–1185.
[22]  Turcotte K, Srinivasan S, Bureau T (2001) Survey of transposable elements from rice genomic sequences. Plant J 25: 169–179.
[23]  Pertea G, Huang X, Liang F, Antonescu V, Sultana R, et al. (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19: 651–652.
[24]  Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
[25]  Falush D, Stephens M, Pritchard J (2003) Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics 164: 1567–1587.
[26]  Saidou AA, Mariac C, Luong V, Pham JL, Bezancon G, et al. (2009) Association studies identify natural variation at PHYC linked to flowering time and morphological variation in pearl millet. Genetics 182: 899–910.
[27]  Kalinowski ST (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5: 187–189.
[28]  Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128–2129.
[29]  Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370.
[30]  Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France).
[31]  van Hintum TJ (2007) Data resolution: a jackknife procedure for determining the consistency of molecular marker datasets. Theor Appl Genet 115: 343–349.
[32]  Weir BS (1996) II: Methods for Discrete Population Genetic Data. Genetic Data Analysis: Sinauer Assoc., Inc: Sunderland, MA, USA.
[33]  Breseghello F, Sorrells ME (2006) Association Mapping of Kernel Size and Milling Quality in Wheat (Triticum aestivum L.) Cultivars. Genetics 172: 1165–1177.
[34]  Perrier X, Flori A, Bonnot F, Hamon P, CIRAD (Organization), editors (2003) Methods for data analysis. Genetic diversity of cultivated tropical plants. Enfield, NH. Montpellier: Science Publishers;Centre de coopération internationale en recherche agronomique pour le développement.
[35]  Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/darwin.
[36]  Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, et al. (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 4: e8451.
[37]  Ohta T, Kimura M (1969) Linkage disequilibrium due to random genetic drift. Genet. Res 13: 47–55.
[38]  Ersoz ES, Buckler ES (2007) Applications of linkage disequilibrium and association mapping. In: Varshney RK, Tuberosa R, editors. Genomics-Assisted Crop Improvement, Vol 1: Genomics Approaches and Platforms. Dordrecht, The Netherlands: Springer. pp. 97–120.
[39]  Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proceedings of the Royal Society of London Series B-Biological Sciences 263: 1619–1626.
[40]  Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9: 323.
[41]  Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180: 977–993.
[42]  Balding DJ (2003) Likelihood-based inference for genetic correlation coefficients. Theor Popul Biol 63: 221–230.
[43]  Jeffreys H (1961) Theory of probability; Press OU, editor.
[44]  Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123: 169–191.
[45]  Narum SR, Hess JE (2011) Comparison of F(ST) outlier tests for SNP loci under selection. Mol Ecol Resour 11: 184–194.
[46]  Laval G, SanCristobal M, Chevalet C (2002) Measuring genetic distances between breeds: use of some distances in various short term evolution models. Genet Sel Evol 34: 481–507.
[47]  Lehmann T, Hawley WA, Collins FH (1996) An Evaluation of Evolutionary Constraints on Microsatellite Loci Using Null Alleles. Genetics 144: 1155–1163.
[48]  Barker JSF, Moore SS, Hetzel DJS, Evans D, Byrne K (1997) Genetic diversity of Asian water buffalo (Bubalus bubalis): microsatellite variation and a comparison with protein-coding loci. Animal Genetics 28: 103–115.
[49]  Estoup A, Rousset F, Michalakis Y, Cornuet JM, Adriamanga M, et al. (1998) Comparative analysis of microsatellite and allozyme markers: a case study investigating microgeographic differentiation in brown trout (Salmo trutta). Molecular Ecology 7: 339–353.
[50]  Ross KG, Shoemaker DD, Krieger MJ, DeHeer CJ, Keller L (1999) Assessing genetic structure with multiple classes of molecular markers: a case study involving the introduced fire ant Solenopsis invicta. Molecular Biology and Evolution 16: 525–543.
[51]  Mariette S, Le Corre V, Austerlitz F, Kremer A (2002) Sampling within the genome for measuring within-population diversity: trade-offs between markers. Molecular Ecology 11: 1145–1156.
[52]  Barnaud A, Deu M, Garine E, McKey D, Joly HI (2007) Local genetic diversity of sorghum in a village in northern Cameroon: structure and dynamics of landraces. Theor Appl Genet 114: 237–248.
[53]  Rabbi IY, Geiger HH, Haussmann BIG, Kiambi D, Folkertsma R, et al. (2010) Impact of farmers' practices and seed systems on the genetic structure of common sorghum varieties in Kenya and Sudan. Plant Genet Resour-C 8: 116–126.
[54]  Mather KA, Caicedo AL, Polato NR, Olsen KM, McCouch S, et al. (2007) The extent of linkage disequilibrium in rice (Oryza sativa L.). Genetics 177: 2223–2232.
[55]  Stahl EA, Dwyer G, Mauricio R, Kreitman M, Bergelson J (1999) Dynamics of disease resistance polymorphism at the Rpm1 locus of Arabidopsis. Nature 400: 667–671.
[56]  Shimizu KK, Purugganan MD (2005) Evolutionary and ecological genomics of Arabidopsis. Plant Physiol 138: 578–584.
[57]  Hudson ME, Kane NC (2009) Plant genomes do a balancing act. Molecular Ecology 18: 2743–2745.
[58]  Rose LE, Bittner-Eddy PD, Langley CH, Holub EB, Michelmore RW, Beynon JL (2004) The Maintenance of Extreme Amino Acid Diversity at the Disease Resistance Gene, RPP13, in Arabidopsis thaliana. Genetics 166: 1517–1527.
[59]  Hudson M, Ringli C, Boylan MT, Quail PH (1999) The FAR1 locus encodes a novel nuclear protein specific to phytochrome A signaling. Genes & development 13: 2017.
[60]  Lin R, Wang H (2004) Arabidopsis FHY3/FAR1 gene family and distinct roles of its members in light control of Arabidopsis development. Plant Physiology 136: 4010.
[61]  Hudson ME, Lisch DR, Quail PH (2003) The FHY3 and FAR1 genes encode transposase-related proteins involved in regulation of gene expression by the phytochrome A-signaling pathway. The Plant Journal 34: 453–471.
[62]  Wang H, Deng XW (2002) Arabidopsis FHY3 defines a key phytochrome A signaling component directly interacting with its homologous partner FAR1. EMBO J 21: 1339–1349.
[63]  Clapham DH, Dormling I, Ekberg L, Eriksson G, Qamaruddin M, et al. (1998) Latitudinal cline of requirement for far red light for the photoperiodic control of budset and extension growth in Picea abies (Norway spruce). Physiologia plantarum 102: 71–78.
[64]  Klopfstein S, Excoffier L, Currat M (2006) The fate of mutations surfing on the wave of a range expansion. Molecular Biology and Evolution 23: 482–490.
[65]  Mariac C, Jehin L, Saidou AA, Thuillet AC, Couderc M, et al. (2011) Genetic basis of pearl millet adaptation along an environmental gradient investigated by a combination of genome scan and association mapping. Mol Ecol 20: 80–91.
[66]  Minic Z, Jouanin L, Rihouey C, Do CT, Lerouge P (2004) Purification and characterization of enzymes exhibiting beta-D-xylosidase activities in stem tissues of Arabidopsis. Plant Physiol 135: 867–878.
[67]  Du J, Wang X, Zhang M, Tian D, Yang YH (2007) Unique nucleotide polymorphism of ankyrin gene cluster in Arabidopsis. J Genet 86: 27–35.
[68]  Namroud MC, Beaulieu J, Juge N, Laroche J, Bousquet J (2008) Scanning the genome for gene single nucleotide polymorphisms involved in adaptive population differentiation in white spruce. Mol Ecol 17: 3599–3613.
[69]  Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620.
[70]  Clerget B, Rattunde HFW, Dagnoko S, Chantereau J (2007) An easy way to assess photoperiod sensitivity in sorghum: Relationships of the vegetative-phase duration and photoperiod sensitivity. Journal of SAT agricultural research 3:

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133