全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Composition and Similarity of Bovine Rumen Microbiota across Individual Animals

DOI: 10.1371/journal.pone.0033306

Full-Text   Cite this paper   Add to My Lib

Abstract:

The bovine rumen houses a complex microbiota which is responsible for cattle's remarkable ability to convert indigestible plant mass into food products. Despite this ecosystem's enormous significance for humans, the composition and similarity of bacterial communities across different animals and the possible presence of some bacterial taxa in all animals' rumens have yet to be determined. We characterized the rumen bacterial populations of 16 individual lactating cows using tag amplicon pyrosequencing. Our data showed 51% similarity in bacterial taxa across samples when abundance and occurrence were analyzed using the Bray-Curtis metric. By adding taxon phylogeny to the analysis using a weighted UniFrac metric, the similarity increased to 82%. We also counted 32 genera that are shared by all samples, exhibiting high variability in abundance across samples. Taken together, our results suggest a core microbiome in the bovine rumen. Furthermore, although the bacterial taxa may vary considerably between cow rumens, they appear to be phylogenetically related. This suggests that the functional requirement imposed by the rumen ecological niche selects taxa that potentially share similar genetic features.

References

[1]  Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6: 121–131.
[2]  Flint HJ (1997) The rumen microbial ecosystem–some recent developments. Trends Microbiol 5: 483–488.
[3]  Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, et al. (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A 106: 1948–1953.
[4]  Welkie DG, Stevenson DM, Weimer PJ (2009) ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle. Anaerobe 16: 94–100.
[5]  Sundset MA, Edwards JE, Cheng YF, Senosiain RS, Fraile MN, et al. (2009) Molecular diversity of the rumen microbiome of Norwegian reindeer on natural summer pasture. Microb Ecol 57: 335–348.
[6]  Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75: 165–174.
[7]  Wanapat M, Cherdthong A (2009) Use of real-time PCR technique in studying rumen cellulolytic bacteria population as affected by level of roughage in swamp buffalo. Curr Microbiol 58: 294–299.
[8]  Tajima K, Aminov RI, Nagamine T, Matsui H, Nakamura M, et al. (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 67: 2766–2774.
[9]  Li M, Penner GB, Hernandez-Sanabria E, Oba M, Guan LL (2009) Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J Appl Microbiol 107: 1924–1934.
[10]  Callaway TR, Dowd SE, Edrington TS, Anderson RC, Krueger N, et al. (2010) Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J Anim Sci 88: 3977–3983.
[11]  Taniguchi M, Penner GB, Beauchemin KA, Oba M, Guan LL (2010) Comparative analysis of gene expression profiles in ruminal tissue from Holstein dairy cows fed high or low concentrate diets. Comp Biochem Physiol Part D Genomics Proteomics 5: 274–279.
[12]  Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2011) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336.
[13]  Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71: 8228–8235.
[14]  Kim M, Morrison M, Yu Z (2011) Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol Ecol 76: 49–63.
[15]  Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, et al. (2011) Enterotypes of the human gut microbiome. Nature 473: 174–80.
[16]  Tajima K, Aminov RI, Nagamine T, Ogata K, Nakamura M, et al. (1999) Rumen bacterial diversity as determined by sequence analysis of 16 S rDNA libraries. FEMS Microbiology Ecology 29: 159–169.
[17]  Fernando SC, Purvis HT 2nd, Najar FZ, Sukharnikov LO, Krehbiel CR, et al. (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 76: 7482–7490.
[18]  Ramsak A, Peterka M, Tajima K, Martin JC, Wood J, et al. (2000) Unravelling the genetic diversity of ruminal bacteria belonging to the CFB phylum. FEMS Microbiol Ecol 33: 69–79.
[19]  Purushe J, Fouts DE, Morrison M, White BA, Mackie RI, et al. (2010) Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche. Microb Ecol 60: 721–729.
[20]  Avgustin G, Wallace RJ, Flint HJ (1997) Phenotypic Diversity among Ruminal Isolates of Prevotella ruminicola: Proposal of Prevotella brevis sp. nov., Prevotella bryantii sp. nov., and Prevotella albensis sp. nov. and Redefinition of Prevotella ruminicola. Int J Syst Bacteriol 47: 284–288.
[21]  Dehority BA, Grubb JA (1980) Effect of short-term chilling of rumen contents on viable bacterial numbers. Appl Environ Microbiol 39: 376–381.
[22]  Walter J, Tannock GW, Tilsala-Timisjarvi A, Rodtong S, Loach DM, et al. (2000) Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. Appl Environ Microbiol 66: 297–303.
[23]  Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, et al. (2008) Evaluation of the bacterial diversity in the feces of cattle using 16 S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8: 125.
[24]  Sun Y, Cai Y, Huse SM, Knight R, Farmerie WG, et al. (2011) A large-scale benchmark study of existing algorithms for taxonomy-independent microbial community analysis. Brief Bioinform 13: 107–21.
[25]  Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.
[26]  Cai Y, Sun Y (2011) ESPRIT-Tree: hierarchical clustering analysis of millions of 16 S rRNA pyrosequences in quasilinear computational time. Nucleic Acids Res 39: e95.
[27]  Li W, Jaroszewski L, Godzik A (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17: 282–283.
[28]  Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, et al. (2011) Chimeric 16 S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21: 494–504.
[29]  Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, et al. (2009) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26: 266–267.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133