Excessive production of monoclonal light chains due to multiple myeloma can induce aggregation-related disorders, such as light chain amyloidosis (AL) and light chain deposition diseases (LCDD). In this work, we produce a non-amyloidogenic IgE λ light chain dimer from human mammalian cells U266, which originated from a patient suffering from multiple myeloma, and we investigate the effect of several physicochemical parameters on the in vitro stability of this protein. The dimer is stable in physiological conditions and aggregation is observed only when strong denaturating conditions are applied (acidic pH with salt at large concentration or heating at melting temperature Tm at pH 7.4). The produced aggregates are spherical, amorphous oligomers. Despite the larger β-sheet content of such oligomers with respect to the native state, they do not bind Congo Red or ThT. The impossibility to obtain fibrils from the light chain dimer suggests that the occurrence of amyloidosis in patients requires the presence of the light chain fragment in the monomer form, while dimer can form only amorphous oligomers or amorphous deposits. No aggregation is observed after denaturant addition at pH 7.4 or at pH 2.0 with low salt concentration, indicating that not a generic unfolding but specific conformational changes are necessary to trigger aggregation. A specific anion effect in increasing the aggregation rate at pH 2.0 is observed according to the following order: SO4??Cl?>H2PO4?, confirming the peculiar role of sulfate in promoting protein aggregation. It is found that, at least for the investigated case, the mechanism of the sulfate effect is related to protein secondary structure changes induced by anion binding.
References
[1]
Buxbaum J (1992) MECHANISMS OF DISEASE - MONOCLONAL IMMUNOGLOBULIN DEPOSITION - AMYLOIDOSIS, LIGHT CHAIN DEPOSITION DISEASE, AND LIGHT AND HEAVY-CHAIN DEPOSITION DISEASE. Hematology-Oncology Clinics of North America 6: 323–346.
[2]
Obici L, Perfetti V, Palladini G, Moratti R, Merlini G (2005) Clinical aspects of systemic amyloid diseases. Biochimica Et Biophysica Acta-Proteins and Proteomics 1753: 11–22.
[3]
Buxbaum JN (2001) Abnormal immunoglobulin synthesis in monoclonal immunoglobulin light chain and light and heavy chain deposition disease. Amyloid-Journal of Protein Folding Disorders 8: 84–93.
[4]
Leung N, Gertz MA, Zeldenrust SR, Rajkumar SV, Dispenzieri A, et al. (2008) Improvement of cast nephropathy with plasma exchange depends on the diagnosis and on reduction of serum free light chains. Kidney International 73: 1282–1288.
[5]
Merlini G, Westermark P (2004) The systemic amyloidoses: clearer understanding of the molecular mechanisms offers hope for more effective therapies. Journal of Internal Medicine 255: 159–178.
[6]
Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry 75: 333–366.
[7]
Bellotti V, Mangione P, Merlini G (2000) Review: Immunoglobulin light chain amyloidosis - The archetype of structural and pathogenic variability. Journal of Structural Biology 130: 280–289.
[8]
Sikkink LA, Ramirez-Alvarado M (2008) Biochemical and aggregation analysis of Bence Jones proteins from different light chain diseases. Amyloid-Journal of Protein Folding Disorders 15: 29–39.
[9]
Nieva J, Shafton A, Altobell LJ, Tripuraneni S, Rogel JK, et al. (2008) Lipid-derived aldehydes accelerate light chain amyloid and amorphous aggregation. Biochemistry 47: 7695–7705.
[10]
Sipe JD, editor. (2005) Amyloid Proteins. Weinheim, DE: Wiley-VCH. pp. 527–569.
[11]
Kaplan B, Ramirez-Alvarado M, Dispenzieri A, Zeldenrust SR, Leung N, et al. (2008) Isolation and biochemical characterization of plasma monoclonal free light chains in amyloidosis and multiple myeloma: a pilot study of intact and truncated forms of light chains and their charge properties. Clinical Chemistry and Laboratory Medicine 46: 335–341.
[12]
Kaplan B, Livneh A, Gallo G (2007) Charge differences between in vivo deposits in immunoglobulin light chain amyloidosis and non-amyloid light chain deposition disease. British Journal of Haematology 136: 723–728.
[13]
Souillac PO, Uversky VN, Millett IS, Khurana R, Doniach S, et al. (2002) Elucidation of the molecular mechanism during the early events in immunoglobulin light chain amyloid fibrillation - Evidence for an off-pathway oligomer at acidic pH. Journal of Biological Chemistry 277: 12666–12679.
[14]
Nilsson K, Bennich H, Johansso Sg, Ponten J (1970) ESTABLISHED IMMUNOGLOBULIN PRODUCING MYELOMA (IGE) AND LYMPHOBLASTOID (IGG) CELL LINES FROM AN IGE MYELOMA PATIENT. Clinical and Experimental Immunology 7: 477–&.
[15]
Wall J, Schell M, Murphy C, Hrncic R, Stevens FJ, et al. (1999) Thermodynamic instability of human lambda 6 light chains: Correlation with fibrillogenicity. Biochemistry 38: 14101–14108.
[16]
Alvarado UR, DeWitt CR, Shultz BB, Ramsland PA, Edmundson AB (2001) Crystallization of a human Bence-Jones protein in microgravity using vapor diffusion in capillaries. Journal of Crystal Growth 223: 407–414.
[17]
Ikeyama S, Nakagawa S, Arakawa M, Sugino H, Kakinuma A (1986) PURIFICATION AND CHARACTERIZATION OF IGE PRODUCED BY HUMAN MYELOMA CELL-LINE, U266. Molecular Immunology 23: 159–167.
[18]
Nilsson K (1971) SYNTHESIS AND SECRETION OF IGE BY AN ESTABLISHED HUMAN MYELOMA CELL LINE. Clinical and Experimental Immunology 9: 785–&.
[19]
Gabrielson JP, Brader ML, Pekar AH, Mathis KB, Winter G, et al. (2007) Quantitation of aggregate levels in a recombinant humanized monoclonal antibody formulation by size-exclusion chromatography, asymmetrical flow field flow fractionation, and sedimentation velocity. Journal of Pharmaceutical Sciences 96: 268–279.
[20]
Qin ZJ, Hu DM, Zhu M, Fink AL (2007) Structural characterization of the partially folded intermediates of an immunoglobulin light chain leading to amyloid fibrillation and amorphous aggregation. Biochemistry 46: 3521–3531.
[21]
McLaughlin RW, De Stigter JK, Sikkink LA, Baden EM, Ramirez-Alvarado M (2006) The effects of sodium sulfate, glycosaminoglycans, and Congo red on the structure, stability, and amyloid formation of an immunoglobulin light-chain protein. Protein Science 15: 1710–1722.
[22]
Morris AM, Watzky MA, Finke RG (2009) Protein aggregation kinetics, mechanism, and curve-fitting: A review of the literature. Biochimica Et Biophysica Acta-Proteins and Proteomics 1794: 375–397.
[23]
Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34: 151–160.
[24]
Seshadri S, Khurana R, Fink AL (1999) Fourier transform infrared spectroscopy in analysis of protein deposits. Amyloid, Prions, and Other Protein Aggregates 309: 559–576.
[25]
Meng XY, Fink AL, Uversky VN (2008) The effect of membranes on the in vitro fibrillation of an amyloidogenic light-chain variable-domain SMA. Journal of Molecular Biology 381: 989–999.
[26]
Souillac PO, Uversky VN, Fink AL (2003) Structural transformations of oligomeric intermediates in the fibrillation of the immunoglobulin light chain LEN. Biochemistry 42: 8094–8104.
[27]
Kim YS, Randolph TW, Stevens FJ, Carpenter JF (2002) Kinetics and energetics of assembly, nucleation, and growth of aggregates and fibrils for an amyloidogenic protein - Insights into transition states from pressure, temperature, and co-solute studies. Journal of Biological Chemistry 277: 27240–27246.
[28]
Kim YS, Cape SP, Chi E, Raffen R, Wilkins-Stevens P, et al. (2001) Counteracting effects of renal solutes on amyloid fibril formation by immunoglobulin light chains. Journal of Biological Chemistry 276: 1626–1633.
[29]
Khurana R, Gillespie JR, Talapatra A, Minert LJ, Ionescu-Zanetti C, et al. (2001) Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Biochemistry 40: 3525–3535.
[30]
Kim YS, Wall JS, Meyer J, Murphy C, Randolph TW, et al. (2000) Thermodynamic modulation of light chain amyloid fibril formation. Journal of Biological Chemistry 275: 1570–1574.
[31]
Randles EG, Thompson JR, Martin DJ, Ramirez-Alvarado M (2009) Structural Alterations within Native Amyloidogenic Immunoglobulin Light Chains. Journal of Molecular Biology 389: 199–210.
[32]
Ahmad A, Millett IS, Doniach S, Uversky VN, Fink AL (2004) Stimulation of insulin fibrillation by urea-induced intermediates. Journal of Biological Chemistry 279: 14999–15013.
[33]
Ahmad A, Millett IS, Doniach S, Uversky VN, Fink AL (2003) Partially folded intermediates in insulin fibrillation. Biochemistry 42: 11404–11416.
[34]
Chiti F, De Lorenzi E, Grossi S, Mangione P, Giorgetti S, et al. (2001) A partially structured species of beta(2)-microglobulin is significantly populated under physiological conditions and involved in fibrillogenesis. Journal of Biological Chemistry 276: 46714–46721.
[35]
Roberts CJ (2007) Non-native protein aggregation kinetics. Biotechnology and Bioengineering 98: 927–938.
[36]
Calamai M, Chiti F, Dobson CM (2005) Amyloid fibril formation can proceed from different conformations of a partially unfolded protein. Biophysical Journal 89: 4201–4210.
[37]
Powers ET, Powers DL (2008) Mechanisms of protein fibril formation: Nucleated polymerization with competing off-pathway aggregation. Biophysical Journal 94: 379–391.
[38]
Raman B, Chatani E, Kihara M, Ban T, Sakai M, et al. (2005) Critical balance of electrostatic and hydrophobic interactions is required for beta(2)-microglobulin amyloid fibril growth and stability. Biochemistry 44: 1288–1299.
[39]
Baden EM, Owen BAL, Peterson FC, Volkman BF, Ramirez-Alvarado M, et al. (2008) Altered dimer interface decreases stability in an amyloidogenic protein. Journal of Biological Chemistry 283: 15853–15860.
[40]
Souillac PO, Uversky VN, Millett IS, Khurana R, Doniach S, et al. (2002) Effect of association state and conformational stability on the kinetics of immunoglobulin light chain amyloid fibril formation at physiological pH. Journal of Biological Chemistry 277: 12657–12665.
[41]
Arosio P, Barolo G, Müller-Sp?th T, Wu H, Morbidelli M (2011) Aggregation stability of a monoclonal antibody in downstream processing. Pharmaceutical Research 28: 1884–1894.
[42]
Zhang YJ, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Current Opinion in Chemical Biology 10: 658–663.
[43]
Curtis RA, Lue L (2006) A molecular approach to bioseparations: Protein-protein and protein-salt interactions. Chemical Engineering Science 61: 907–923.
[44]
Bostrom M, Williams DRM, Ninham BW (2004) Why the properties of proteins in salt solutions follow a Hofmeister series. Current Opinion in Colloid & Interface Science 9: 48–52.
[45]
McLaughlin RW, Sikkink LA, Baden EM, Ramirez-Alvarado M (2006) The effect of glycosaminoglycans on the structure, stability and amyloid formation of an immunoglobulin light chain protein. Amyloid-Journal of Protein Folding Disorders 13: 45–46.
[46]
Stevens FJ, Kisilevsky R (2000) Immunoglobulin light chains, glycosaminoglycans, and amyloid. Cellular and Molecular Life Sciences 57: 441–449.
[47]
Sikkink LA, Ramirez-Alvarado M (2008) Salts enhance both protein stability and amyloid formation of an immunoglobulin light chain. Biophysical Chemistry 135: 25–31.
[48]
Borysik AJ, Morten IJ, Radford SE, Hewitt EW (2007) Specific glycosaminoglycans promote unseeded amyloid formation from beta(2)-microglobulin under physiological conditions. Kidney International 72: 174–181.
[49]
Noborn F, O'Callaghan P, Dacklin I, Ancsin JB, Damas A, et al. (2010) Heparan sulphate/heparin binds transthyretin and promotes its fibrillogenesis. Amyloid-Journal of Protein Folding Disorders 17: 40–40.
[50]
Motamedi-Shad N, Monsellier E, Torrassa S, Relini A, Chiti F (2009) Kinetic Analysis of Amyloid Formation in the Presence of Heparan Sulfate FASTER UNFOLDING AND CHANGE OF PATHWAY. Journal of Biological Chemistry 284: 29921–29934.
Yang H, Pritzker M, Fung SY, Sheng Y, Wang W, et al. (2006) Anion effect on the nanostructure of a metal ion binding self-assembling peptide. Langmuir 22: 8553–8562.