全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

The Twin-Arginine Translocation Pathway in α-Proteobacteria Is Functionally Preserved Irrespective of Genomic and Regulatory Divergence

DOI: 10.1371/journal.pone.0033605

Full-Text   Cite this paper   Add to My Lib

Abstract:

The twin-arginine translocation (Tat) pathway exports fully folded proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Although much progress has been made in unraveling the molecular mechanism and biochemical characterization of the Tat system, little is known concerning its functionality and biological role to confer adaptive skills, symbiosis or pathogenesis in the α-proteobacteria class. A comparative genomic analysis in the α-proteobacteria class confirmed the presence of tatA, tatB, and tatC genes in almost all genomes, but significant variations in gene synteny and rearrangements were found in the order Rickettsiales with respect to the typically described operon organization. Transcription of tat genes was confirmed for Anaplasma marginale str. St. Maries and Brucella abortus 2308, two α-proteobacteria with full and partial intracellular lifestyles, respectively. The tat genes of A. marginale are scattered throughout the genome, in contrast to the more generalized operon organization. Particularly, tatA showed an approximately 20-fold increase in mRNA levels relative to tatB and tatC. We showed Tat functionality in B. abortus 2308 for the first time, and confirmed conservation of functionality in A. marginale. We present the first experimental description of the Tat system in the Anaplasmataceae and Brucellaceae families. In particular, in A. marginale Tat functionality is conserved despite operon splitting as a consequence of genome rearrangements. Further studies will be required to understand how the proper stoichiometry of the Tat protein complex and its biological role are achieved. In addition, the predicted substrates might be the evidence of role of the Tat translocation system in the transition process from a free-living to a parasitic lifestyle in these α-proteobacteria.

References

[1]  Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77: 643–667.
[2]  Lee PA, Tullman-Ercek D, Georgiou G (2006) The bacterial twin-arginine translocation pathway. Annu Rev Microbiol 60: 373–395.
[3]  Batut J, Andersson SG, O'Callaghan D (2004) The evolution of chronic infection strategies in the alpha-proteobacteria. Nat Rev Microbiol 2: 933–945.
[4]  Bao W, Kumagai Y, Niu H, Yamaguchi M, Miura K, et al. (2009) Four VirB6 paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-containing vacuoles. J Bacteriol 191: 278–286.
[5]  Cheng Z, Wang X, Rikihisa Y (2008) Regulation of type IV secretion apparatus genes during Ehrlichia chaffeensis intracellular development by a previously unidentified protein. J Bacteriol 190: 2096–2105.
[6]  Gillespie JJ, Ammerman NC, Dreher-Lesnick SM, Rahman MS, Worley MJ, et al. (2009) An anomalous type IV secretion system in Rickettsia is evolutionarily conserved. PLoS One 4: e4833.
[7]  Rikihisa Y (2011) Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin Microbiol Rev 24: 469–489.
[8]  Yuan J, Zweers JC, van Dijl JM, Dalbey RE (2010) Protein transport across and into cell membranes in bacteria and archaea. Cell Mol Life Sci 67: 179–199.
[9]  Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, et al. (1998) Overlapping functions of components of a bacterial Sec-independent protein export pathway. Embo J 17: 3640–3650.
[10]  Sargent F, Stanley NR, Berks BC, Palmer T (1999) Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J Biol Chem 274: 36073–36082.
[11]  Berks BC, Sargent F, Palmer T (2000) The Tat protein export pathway. Mol Microbiol 35: 260–274.
[12]  Xiong Y, Santini CL, Kan B, Xu J, Filloux A, et al. (2007) Expression level of heterologous tat genes is crucial for in vivo reconstitution of a functional Tat translocase in Escherichia coli. Biochimie 89: 676–685.
[13]  Jack RL, Sargent F, Berks BC, Sawers G, Palmer T (2001) Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol 183: 1801–1804.
[14]  Chanal A, Santini C, Wu L (1998) Potential receptor function of three homologous components, TatA, TatB and TatE, of the twin-arginine signal sequence-dependent metalloenzyme translocation pathway in Escherichia coli. Mol Microbiol 30: 674–676.
[15]  Dilks K, Gimenez MI, Pohlschroder M (2005) Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea. J Bacteriol 187: 8104–8113.
[16]  Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, et al. (2004) Two minimal Tat translocases in Bacillus. Mol Microbiol 54: 1319–1325.
[17]  Blaudeck N, Kreutzenbeck P, Muller M, Sprenger GA, Freudl R (2005) Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient tat-dependent protein translocation in the absence of TatB. J Biol Chem 280: 3426–3432.
[18]  Punginelli C, Maldonado B, Grahl S, Jack R, Alami M, et al. (2007) Cysteine scanning mutagenesis and topological mapping of the Escherichia coli twin-arginine translocase TatC Component. J Bacteriol 189: 5482–5494.
[19]  Hinsley AP, Stanley NR, Palmer T, Berks BC (2001) A naturally occurring bacterial Tat signal peptide lacking one of the ‘invariant’ arginine residues of the consensus targeting motif. FEBS Lett 497: 45–49.
[20]  Ignatova Z, Hornle C, Nurk A, Kasche V (2002) Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery. Biochem Biophys Res Commun 291: 146–149.
[21]  Alami M, Luke I, Deitermann S, Eisner G, Koch HG, et al. (2003) Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol Cell 12: 937–946.
[22]  Caldelari I, Mann S, Crooks C, Palmer T (2006) The Tat pathway of the plant pathogen Pseudomonas syringae is required for optimal virulence. Mol Plant Microbe Interact 19: 200–212.
[23]  De Buck E, Lammertyn E, Anne J (2008) The importance of the twin-arginine translocation pathway for bacterial virulence. Trends Microbiol 16: 442–453.
[24]  Joshi MV, Mann SG, Antelmann H, Widdick DA, Fyans JK, et al. (2010) The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen Streptomyces scabies. Mol Microbiol 77: 252–271.
[25]  Lavander M, Ericsson SK, Broms JE, Forsberg A (2006) The twin arginine translocation system is essential for virulence of Yersinia pseudotuberculosis. Infect Immun 74: 1768–1776.
[26]  McDonough JA, Hacker KE, Flores AR, Pavelka MS Jr, Braunstein M (2005) The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases. J Bacteriol 187: 7667–7679.
[27]  Ochsner UA, Snyder A, Vasil AI, Vasil ML (2002) Effects of the twin-arginine translocase on secretion of virulence factors, stress response, and pathogenesis. Proc Natl Acad Sci U S A 99: 8312–8317.
[28]  Saint-Joanis B, Demangel C, Jackson M, Brodin P, Marsollier L, et al. (2006) Inactivation of Rv2525c, a substrate of the twin arginine translocation (Tat) system of Mycobacterium tuberculosis, increases beta-lactam susceptibility and virulence. J Bacteriol 188: 6669–6679.
[29]  Zhang L, Zhu Z, Jing H, Zhang J, Xiong Y, et al. (2009) Pleiotropic effects of the twin-arginine translocation system on biofilm formation, colonization, and virulence in Vibrio cholerae. BMC Microbiol 9: 114.
[30]  Ding Z, Christie PJ (2003) Agrobacterium tumefaciens twin-arginine-dependent translocation is important for virulence, flagellation, and chemotaxis but not type IV secretion. J Bacteriol 185: 760–771.
[31]  Lindenstrauss U, Bruser T (2006) Conservation and variation between Rhodobacter capsulatus and Escherichia coli Tat systems. J Bacteriol 188: 7807–7814.
[32]  Meloni S, Rey L, Sidler S, Imperial J, Ruiz-Argueso T, et al. (2003) The twin-arginine translocation (Tat) system is essential for Rhizobium-legume symbiosis. Mol Microbiol 48: 1195–1207.
[33]  Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.
[34]  Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56: 564–577.
[35]  Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9: 299–306.
[36]  Stothard P, Wishart DS (2005) Circular genome visualization and exploration using CGView. Bioinformatics 21: 537–539.
[37]  Ruybal P, Moretta R, Perez A, Petrigh R, Zimmer P, et al. (2009) Genetic diversity of Anaplasma marginale in Argentina. Vet Parasitol 162: 176–180.
[38]  Wieser M, Busse HJ (2000) Rapid identification of Staphylococcus epidermidis. Int J Syst Evol Microbiol 50(Pt 3): 1087–1093.
[39]  Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, et al. (2004) Coordinating assembly and export of complex bacterial proteins. Embo J 23: 3962–3972.
[40]  Hicks MG, Guymer D, Buchanan G, Widdick DA, Caldelari I, et al. (2006) Formation of functional Tat translocases from heterologous components. BMC Microbiol 6: 64.
[41]  Buchanan G, de Leeuw E, Stanley NR, Wexler M, Berks BC, et al. (2002) Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Mol Microbiol 43: 1457–1470.
[42]  Stanley NR, Palmer T, Berks BC (2000) The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 275: 11591–11596.
[43]  Silvestro A, Pommier J, Giordano G (1988) The inducible trimethylamine-N-oxide reductase of Escherichia coli K12: biochemical and immunological studies. Biochim Biophys Acta 954: 1–13.
[44]  Ize B, Stanley NR, Buchanan G, Palmer T (2003) Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol 48: 1183–1193.
[45]  Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30: e36.
[46]  Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinformatics 6: 167.
[47]  Dilks K, Rose RW, Hartmann E, Pohlschroder M (2003) Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185: 1478–1483.
[48]  Bagos PG, Nikolaou EP, Liakopoulos TD, Tsirigos KD (2010) Combined prediction of Tat and Sec signal peptides with hidden Markov models. Bioinformatics 26: 2811–2817.
[49]  Brayton KA, Kappmeyer LS, Herndon DR, Dark MJ, Tibbals DL, et al. (2005) Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proc Natl Acad Sci U S A 102: 844–849.
[50]  Frutos R, Viari A, Ferraz C, Morgat A, Eychenie S, et al. (2006) Comparative genomic analysis of three strains of Ehrlichia ruminantium reveals an active process of genome size plasticity. J Bacteriol 188: 2533–2542.
[51]  Stanley NR, Findlay K, Berks BC, Palmer T (2001) Escherichia coli strains blocked in Tat-dependent protein export exhibit pleiotropic defects in the cell envelope. J Bacteriol 183: 139–144.
[52]  Tsui HC, Zhao G, Feng G, Leung HC, Winkler ME (1994) The mutL repair gene of Escherichia coli K-12 forms a superoperon with a gene encoding a new cell-wall amidase. Mol Microbiol 11: 189–202.
[53]  Stanley NR, Sargent F, Buchanan G, Shi J, Stewart V, et al. (2002) Behaviour of topological marker proteins targeted to the Tat protein transport pathway. Mol Microbiol 43: 1005–1021.
[54]  Bolhuis A (2002) Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway? Microbiology 148: 3335–3346.
[55]  Rose RW, Bruser T, Kissinger JC, Pohlschroder M (2002) Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45: 943–950.
[56]  Jenner DC, Dassa E, Whatmore AM, Atkins HS (2009) ATP-Binding Cassette Systems of Brucella. Comp Funct Genomics 354649.
[57]  Holland IB, Blight MA (1999) ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J Mol Biol 293: 381–399.
[58]  Heikkila MP, Honisch U, Wunsch P, Zumft WG (2001) Role of the Tat ransport system in nitrous oxide reductase translocation and cytochrome cd1 biosynthesis in Pseudomonas stutzeri. J Bacteriol 183: 1663–1671.
[59]  Seleem MN, Boyle SM, Sriranganathan N (2008) Brucella: a pathogen without classic virulence genes. Vet Microbiol 129: 1–14.
[60]  Krehenbrink M, Downie JA (2008) Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae. BMC Genomics 9: 55.
[61]  Pickering BS, Oresnik IJ (2010) The twin arginine transport system appears to be essential for viability in Sinorhizobium meliloti. J Bacteriol 192: 5173–5180.
[62]  Jiang X, Fares MA (2011) Functional diversification of the twin-arginine translocation pathway mediates the emergence of novel ecological adaptations. Mol Biol Evol 28: 3183–3193.
[63]  Boussau B, Karlberg EO, Frank AC, Legault BA, Andersson SG (2004) Computational inference of scenarios for alpha-proteobacterial genome evolution. Proc Natl Acad Sci U S A 101: 9722–9727.
[64]  Massung RF, Hiratzka SL, Brayton KA, Palmer GH, Lee KN (2008) Succinate dehydrogenase gene arrangement and expression in Anaplasma phagocytophilum. Gene 414: 41–48.
[65]  Sargent F, Berks BC, Palmer T (2006) Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins. FEMS Microbiol Lett 254: 198–207.
[66]  Shruthi H, Babu MM, Sankaran K (2010) TAT-pathway-dependent lipoproteins as a niche-based adaptation in prokaryotes. J Mol Evol 70: 359–370.
[67]  De Buck E, Vranckx L, Meyen E, Maes L, Vandersmissen L, et al. (2007) The twin-arginine translocation pathway is necessary for correct membrane insertion of the Rieske Fe/S protein in Legionella pneumophila. FEBS Lett 581: 259–264.
[68]  Begg KJ, Donachie WD (1985) Cell shape and division in Escherichia coli: experiments with shape and division mutants. J Bacteriol 163: 615–622.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133