The neural basis of word-retrieval deficits in normal aging has rarely been assessed and the few previous functional imaging studies found enhanced activity in right prefrontal areas in healthy older compared to younger adults. However, more pronounced right prefrontal recruitment has primarily been observed during challenging task conditions. Moreover, increased task difficulty may result in enhanced activity in the ventral inferior frontal gyrus (vIFG) bilaterally in younger participants as well. Thus, the question arises whether increased activity in older participants represents an age-related phenomenon or reflects task difficulty effects. In the present study, we manipulated task difficulty during overt semantic and phonemic word-generation and used functional magnetic resonance imaging to assess activity patterns in the vIFG in healthy younger and older adults (N = 16/group; mean age: 24 vs. 69 years). Both groups produced fewer correct responses during the more difficult task conditions. Overall, older participants produced fewer correct responses and showed more pronounced task-related activity in the right vIFG. However, increased activity during the more difficult conditions was found in both groups. Absolute degree of activity was correlated with performance across groups, tasks and difficulty levels. Activity modulation (difficult vs. easy conditions) was correlated with the respective drop in performance across groups and tasks. In conclusion, vIFG activity levels and modulation of activity were mediated by performance accuracy in a similar way in both groups. Group differences in the right vIFG activity were explained by performance accuracy which needs to be considered in future functional imaging studies of healthy and pathological aging.
References
[1]
Henry JD, Crawford JR, Phillips LH (2004) Verbal fluency performance in dementia of the Alzheimer's type: a meta-analysis. Neuropsychologia 42: 1212–1222.
[2]
Meinzer M (2008) Functional re-recruitment of dysfunctional brain areas predicts language recovery in chronic aphasia. Neuroimage 39: 2038–2046.
[3]
Cabeza R (2002) Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychol Aging 17: 85–100.
[4]
Park DC, Reuter-Lorenz P (2009) The adaptive brain: aging and neurocognitive scaffolding. Annu Rev Psychol 60: 173–196.
[5]
Fling BW, Peltier SJ, Bo J, Welsh RC, Seidler RD (2011) Age differences in interhemispheric interactions: callosal structure, physiological function, and behavior. Front Neurosci 5: 38.
[6]
Meinzer M, Flaisch T, Wilser L, Eulitz C, Rockstroh B, et al. (2009) Neural signatures of semantic and phonemic fluency in young and old adults. J Cogn Neurosci 21: 2007–2018.
[7]
Persson J, Sylvester CY, Nelson JK, Welsh KM, Jonides J, et al. (2004) Selection requirements during verb generation: differential recruitment in older and younger adults. Neuroimage 23: 1382–1390.
[8]
Wierenga CE, Benjamin M, Gopinath K, Perlstein WM, Leonard CM, et al. (2008) Age-related changes in word retrieval: Role of bilateral frontal and subcortical networks. Neurobiol Aging 29: 436–451.
[9]
Nagel IE, Preuschhof C, Li SC, Nyberg L, Backman L, et al. (2009) Performance level modulates adult age differences in brain activation during spatial working memory. Proc Natl Acad Sci U S A 106: 22552–22557.
[10]
Thompson-Schill SL, D'Esposito M, Aguirre GK, Farah MJ (1997) Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proc Natl Acad Sci U S A 94: 14792–14797.
[11]
Meinzer M, Seeds L, Flaisch T, Harnish S, Cohen ML, et al. (2012) Impact of changed positive and negative task-related brain activity on word-retrieval in aging. Neurobiol Aging 33: 656–669.
[12]
Costafreda SG, Fu CH, Lee L, Everitt B, Brammer MJ, et al. (2006) A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus. Hum Brain Mapp 27: 799–810.
[13]
Stuss DT, Alexander MP, Hamer L, Palumbo C, Dempster R, et al. (1998) The effects of focal anterior and posterior brain lesions on verbal fluency. J Int Neuropsychol Soc 4: 265–278.
[14]
Troyer AK, Moscovitch M (2006) Cognitive processes of verbal fluency tests. In: Poreh A, editor. The quantified process approach to neuropsychological assessment. New York: Psychology Press. pp. 185–202.
[15]
Gold BT, Buckner RL (2002) Common prefrontal regions coactivate with dissociable posterior regions during controlled semantic and phonological tasks. Neuron 35: 803–812.
[16]
Murphy KJ, Rich JB, Troyer AK (2006) Verbal fluency patterns in amnestic mild cognitive impairment are characteristic of Alzheimer's type dementia. J Int Neuropsychol Soc 12: 570–574.
[17]
Oldfield RC (1971) The assessment of handedness: The Edinburgh inventory. Neuropsychologia 9: 97–113.
[18]
Folstein MF, Folstein SE, McHugh PR (1975) “Mini-Mental State”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12: 189–198.
[19]
Beck AT, Steer RA, Ball R, Ranieri W (1996) Comparison of Beck Depression Inventories -IA and -II in psychiatric outpatients. J Pers Assess 67: 588–597.
[20]
Delis DC, Kramer JH, Kaplan E, Ober B (2000) California Verbal Learning Test: Manual. San Antonio: Pearson.
[21]
Wechsler D (1987) The Wechsler Memmory Scale-Revised. San Antonio: Psychological Corporation.
[22]
Kaplan D, Goodglass H, Weintraub S (1983) The Boston Naming Test. Philadelphia: Lea & Febiger.
[23]
Delis DC, Kramer JH, Kaplan E, Holdnack J (2004) Reliability and validity of the Delis-Kaplan Executive Functions System: an update. J Int Neuropsychol Soc 30: 301–303.
[24]
Wiig EH, Secord W (1989) Test of Language Competence: Expanded. New York: Psychological Corporation.
[25]
Howard D, Patterson K (1992) Pyramids and palm trees: A test of semantic access from pictures and words. Thames Valley: Bury St. Edmunds.
[26]
Azuma T, Bayles KA, Cruz RF, Tomoeda CK, Wood JA, et al. (1997) Comparing the difficulty of letter, semantic, and name fluency tasks for normal elderly and patients with Parkinson's disease. Neuropsychology 11: 488–497.
[27]
Battig WF, Montague WE (1969) Category norms for verbal items in 56 categories: a replication and extension of the conneticut category norms. J Exp Psychol 80: 1–46.
[28]
Borkowski JG, Benton AL, Spreen O (1967) Word fluency and brain damage. Neuropsychologia 5: 135–140.
[29]
Diaz M, Sailor K, Cheung D, Kuslansky G (2004) Category size effects in semantic and letter fluency in Alzheimer's patients. Brain Lang 89: 108–114.
[30]
Mayr U, Kliegl R (2000) Complex semantic processing in old age: does it stay or does it go? Psychol Aging 15: 29–43.
[31]
Gaab N, Gabrieli JD, Glover GH (2007) Assessing the influence of scanner background noise on auditory processing. II. An fMRI study comparing auditory processing in the absence and presence of recorded scanner noise using a sparse design. Hum Brain Mapp 28: 721–732.
[32]
Meinzer M, Antonenko D, Lindenberg R, Hetzer S, Ulm L, et al. (2012) Electrical brain stimulation improves cognitive performance by modulating functional connectivity and task-specific activation. J Neurosci 32: 1856–1866.
[33]
Steiger JH (1980) Tests for comparing elements of a correlation matrix. Psychol Bull 87: 245–251.
[34]
Pihlajam?ki M, Tanila H, Hanninen T, Kononen M, Laakso M, et al. (2000) Verbal fluency activates the left medial temporal lobe: a functional magnetic resonance imaging study. Ann Neurol 47: 470–476.
[35]
Troyer AK, Moscovitch M, Winocur G (1997) Clustering and switching as two components of verbal fluency: evidence from younger and older healthy adults. Neuropsychology 11: 138–146.
[36]
Cardebat D, Puel M, Celsis P, Doyon B (1991) Cerebral blood flow correlates of phonological and semantic verbal fluency performance in demented patients. J Neuroling 6: 345–359.
[37]
Brickman AM, Paul RH, Cohen RA, Williams LM, MacGregor KL, et al. (2005) Category and letter verbal fluency across the adult lifespan: relationship to EEG theta power. Arch Clin Neuropsychol 20: 561–573.
[38]
Crosson B, Benefield H, Cato MA, Sadek JR, Moore AB, et al. (2003) Left and right basal ganglia and frontal activity during language generation: contributions to lexical, semantic, and phonological processes. J Int Neuropsychol Soc 9: 1061–1077.
[39]
Spreng RN, Wojtowicz M, Grady CL (2010) Reliable differences in brain activity between young and old adults: a quantitative meta-analysis across multiple cognitive domains. Neurosci Biobehav Rev 34: 1178–1194.
[40]
Szaflarski JP, Holland SK, Schmithorst VJ, Byars AW (2006) fMRI study of language lateralization in children and adults. Hum Brain Mapp 27: 202–212.
[41]
Abutalebi J (2008) Neural aspects of second language representation and language control. Acta Psychol (Amst) 128: 466–478.
[42]
Holland R, Leff AP, Josephs O, Galea JM, Desikan M, et al. (2011) Speech Facilitation by Left Inferior Frontal Cortex Stimulation. Curr Biol 1403–1407.
[43]
Basho S, Palmer ED, Rubio MA, Wulfeck B, Muller RA (2007) Effects of generation mode in fMRI adaptations of semantic fluency: Paced production and overt speech. Neuropsychologia.
[44]
Abel S, Dressel K, Kummerer D, Saur D, Mader I, et al. (2009) Correct and erroneous picture naming responses in healthy subjects. Neurosci Lett 463: 167–171.
[45]
Meinzer M, Breitenstein C (2008) Functional imaging studies of treatment-induced recovery in chronic aphasia. Aphasiology 22: 1251–1268.
[46]
Meinzer M, Harnish S, Conway T, Crosson B (2011) Recent developments in functional and structural imaging of aphasia recovery after stroke. Aphasiology 25: 271–290.
[47]
Wierenga CE, Stricker NH, McCauley A, Simmons A, Jak AJ, et al. (2010) Increased functional brain response during word retrieval in cognitively intact older adults at genetic risk for Alzheimer's disease. Neuroimage 51: 1222–1233.