全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Mice Deficient in CD38 Develop an Attenuated Form of Collagen Type II-Induced Arthritis

DOI: 10.1371/journal.pone.0033534

Full-Text   Cite this paper   Add to My Lib

Abstract:

CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

References

[1]  Deterre P, Berthelier V, Bauvois B, Dalloul A, Schuber F, et al. (2000) CD38 in T- and B-cell functions. Chem Immunol 75: 146–168.
[2]  Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, et al. (2008) Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 88: .841–886.
[3]  Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, et al. (1993) Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262: 1056–1059.
[4]  Zocchi E, Franco L, Guida L, Benatti U, Bargellesi A, et al. (1993) A single protein immunologically identified as CD38 displays NAD-glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun 196: 1459–1465.
[5]  Lee HC, Aarhus R (1995) A derivate of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem 270: 2152–2157.
[6]  Schuber F, Lund FE (2004) Structure and enzymology of ADP-ribosyl cyclases: Conserved enzymes that produce multiple calcium mobilizing metabolites. Curr Mol Med 4: 249–261.
[7]  Deaglio S, Mallone R, Baj G, Arnulfo A, Surico N, et al. (2000) CD38/CD31, a receptor/ligand system ruling adhesion and signaling in human leukocytes. Chem Immunol 75: 99–120.
[8]  Frasca L, Fedele G, Deaglio S, Capuano C, Palazzo R, et al. (2006) CD38 orchestrates migration, survival, and Th1 immune response of human mature dendritic cells. Blood 107: 2392–2399.
[9]  Viegas MS, do Carmo A, Silva T, Seco F, Serra V, et al. (2007) CD38 plays a role in effective containment of mycobacteria within granulomata and polarization of Th1 immune responses against Mycobacterium avium. Microb Infect 9: 847–854.
[10]  Munoz P, Mittelbrunn M, de la Fuente H, Perez-Martinez M, García-Perez A, et al. (2008) Antigen-induced clustering of surface CD38 and recruitment of intracellular CD38 to the immunologic synapse. Blood 111: 3653–3664.
[11]  Zubiaur M, Fernandez O, Ferrero E, Salmeron J, Malissen B, et al. (2002) CD38 is associated with lipid rafts and upon receptor stimulation leads to Akt/protein kinase B and Erk activation in the absence of the CD3-zeta immune receptor tyrosine-based activation motifs. J Biol Chem 277: 13–22.
[12]  Munoz P, Navarro MD, Pavon EJ, Salmeron J, Malavasi F, et al. (2003) CD38 signaling in T cells is initiated within a subset of membrane rafts containing Lck and the CD3-zeta subunit of the T cell antigen receptor. J Biol Chem 278: 50791–50802.
[13]  Zumaquero E, Munoz P, Cobo M, Lucena G, Pavón EJ, et al. (2010) Exosomes from human lymphoblastoid B cells express enzymatically active CD38 that is associated with signaling complexes containing CD81, Hsc-70 and Lyn. Exp Cell Res 316: 2692–2706.
[14]  Cockayne DA, Muchamuel T, Grimaldi JC, Muller-Steffner H, Randall TD, et al. (1998) Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses. Blood 92: 1324–1333.
[15]  Partida-Sanchez S, Goodrich S, Kusser K, Oppenheimer N, Randall TD, et al. (2004) Regulation of dendritic cell trafficking by the ADP-rybosil cyclase CD38: impact on the development of humoral immunity. Immunity 20: 279–291.
[16]  Partida-Sanchez S, Cockayne DA, Monard S, Jacobson EL, Oppenheimer N, et al. (2001) Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo. Nat Med 7: 1209–1216.
[17]  Chen J, Chen YG, Reifsnyder PC, Schott WH, Lee CH, et al. (2006) Targeted disruption of CD38 accelerates autoimmune diabetes in NOD/Lt mice by enhancing autoimmunity in an ADP-ribosyltransferase 2-dependent fashion. J Immunol 176: 4590–4599.
[18]  Chen YG, Chen J, Osborne MA, Chapman HD, Besra GS, et al. (2006) CD38 is required for the peripheral survival of immunotolerogenic CD4+ invariant NK T cells in nonobese diabetic mice. J Immunol 177: 2939–2947.
[19]  Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, et al. (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART-2 activates the cytolytic P2X7 purinoceptor. Immunity 19: 571–582.
[20]  Chiba A, Kaieda S, Oki S, Yamamura T, Miyake S (2005) The involvement of V(alpha)14 natural killer T cells in the pathogenesis of arthritis in murine models. Arthritis Rheum 52: 1941–1948.
[21]  Yoshiga Y, Goto D, Segawa S, Ohnishi Y, Matsumoto I, et al. (2008) Invariant NKT cells produce IL-17 through IL-23-dependent and -independent pathways with potential modulation of Th17 response in collagen-induced arthritis. Int J Mol Med 22: 369–374.
[22]  Driver JP, Scheuplein F, Chen YG, Grier AE, Wilson SB, et al. (2010) Invariant natural killer T-cell control of type 1 diabetes: a dendritic cell genetic decision of a silver bullet or Russian roulette. Diabetes 59: 423–432.
[23]  Choe CU, Lardong K, Gelderblom M, Ludewig P, Leypoldt F, et al. (2011) CD38 exacerbates focal cytokine production, postischemic inflammation and brain injury after focal cerebral ischemia. PLoS One 6: e19046.
[24]  Lund FE (2006) Signaling properties of CD38 in the mouse immune system: enzyme-dependent and -independent roles in immunity. Mol Med 12: 328–333.
[25]  Guedes AG, Jude JA, Paulin J, Kita H, Lund FE, et al. (2008) Role of CD38 in TNF-alpha-induced airway hyperresponsiveness. Am J Physiol Lung Cell Mol Physiol 294: L290–299.
[26]  Grammer AC, Slota R, Fischer R, Gur H, Girschick H, et al. (2003) Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. J Clin Invest 112: 1506–1520.
[27]  Cho YG, Cho ML, Min SY, Kim HY (2007) Type II collagen autoimmunity in a mouse model of human rheumatoid arthritis. Autoimmun Rev 7: 65–70.
[28]  Kelchtermans H, De Klerck B, Mitera T, Van Balen M, Bullens D, et al. (2005) Defective CD4+CD25+ regulatory T cell functioning in collagen-induced arthritis: an important factor in pathogenesis, counter-regulated by endogenous IFN-gamma. Arthritis Res Ther 7: R402–415.
[29]  Frey O, Petrow PK, Gajda M, Siegmund K, Huehn J, et al. (2005) The role of regulatory T cells in antigen-induced arthritis: aggravation of arthritis after depletion and amelioration after transfer of CD4+CD25+ T cells. Arthritis Res Ther 7: R291–301.
[30]  González J, Tamayo E, Santiuste I, Marquina R, Buelta L, et al. (2007) CD4+CD25+ T cell-dependent inhibition of autoimmunity in transgenic mice overexpressing human Bcl-2 in T lymphocytes. J Immunol 178: 2778–2786.
[31]  Yanaba K, Hamaguchi Y, Venturi GM, Steeber DA, St Clair EW, et al. (2007) B cell depletion delays collagen-induced arthritis in mice: arthritis induction requires synergy between humoral and cell-mediated immunity. J Immunol 179: 1369–1380.
[32]  Svensson L, Jirholt J, Holmdahl R, Jansson L (1998) B cell-deficient mice do not develop type II collagen-induced arthritis (CIA). Clin Exp Immunol 111: 521–526.
[33]  Fossati-Jimack L, Ioan-Facsinay A, Reininger L, Chicheportiche Y, Watanabe N, et al. (2000) Markedly different pathogenicity of four immunoglobulin G isotype-switch variants of an antierythrocyte autoantibody is based on their capacity to interact in vivo with the low-affinity Fcγ receptor III. J Exp Med 191: 1293–1302.
[34]  Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19: 275–290.
[35]  Neuberger MS, Rajewsky K (1981) Activation mouse complement by monoclonal mouse antibodies. Eur J Immunol 11: 1012–1016.
[36]  Lubberts E, Koenders MI, Oppers-Walgreen B, van den Bersselaar L, et al. (2004) Treatment with a neutralizing anti-murine interleukin-17 antibody after the onset of collagen-induced arthritis reduces joint inflammation, cartilage destruction, and bone erosion. Arthritis Rheum 50: 650–659.
[37]  Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, et al. (2006) Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J Exp Med 203: 2673–2682.
[38]  Chu CQ, Song Z, Mayton L, Wu B, Wooley PH (2003) IFN? deficient C57BL/6 (H-2b) mice develop collagen induced arthritis with predominant usage of T cell receptor Vβ6 and Vβ8 in arthritic joints. Ann Rheum Dis 62: 983–990.
[39]  Guedez YB, Whittington KB, Clayton JL, Joosten LA, van de Loo FA, et al. (2001) Genetic ablation of interferon-? up-regulates interleukin-1β expression and enables the elicitation of collagen-induced arthritis in a nonsusceptible mouse strain. Arthritis Rheum 44: 2413–2424.
[40]  Manoury-Schwartz B, Chiocchia G, Bessis N, Abehsira-Amar O, Batteux F, et al. (1997) High susceptibility to collagen-induced arthritis in mice lacking IFN-? receptors. J Immunol 158: 5501–5506.
[41]  Vermeire K, Heremans H, van de Putte M, Huang S, Billiau A, et al. (1997) Accelerated collagen-induced arthritis in IFN-? receptor-deficient mice. J Immunol 158: 5507–5513.
[42]  Postigo J, Genre F, Iglesias M, Fernández-Rey M, Buelta L, et al. (2011) Exacerbation of collagen type II-induced arthritis in ApoE deficient mice in association with the expansion of Th1 and Th17 cells. Arthritis Rheum 63: 971–980.
[43]  Lamacchia C, Palmer G, Seemayer C, Talabot-Ayer D, Gabay C (2010) Enhanced Th1 and Th17 responses and arthritis severity in mice with a deficiency of myeloid cell-specific interleukin-1 receptor antagonist. Arthritis Rheum 62: 452–462.
[44]  Griffiths MM, Cremer MA, Harper DS, McCall S, Cannon GW (1992) Immunogenetics of collagen-induced arthritis in rats: both MHC and non-MHC gene products determine the epitope specificity of immune response to bovine and chick type II collagens. J Immunol 149: 309–316.
[45]  Harrell MI, Iritani BM, Ruddell A (2008) Lymph node mapping in the mouse. J Immunol Methods 332: 170–174.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133