全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Rapid Accumulation of CD14+CD11c+ Dendritic Cells in Gut Mucosa of Celiac Disease after in vivo Gluten Challenge

DOI: 10.1371/journal.pone.0033556

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Of antigen-presenting cells (APCs) expressing HLA-DQ molecules in the celiac disease (CD) lesion, CD11c+ dendritic cells (DCs) co-expressing the monocyte marker CD14 are increased, whereas other DC subsets (CD1c+ or CD103+) and CD163+CD11c? macrophages are all decreased. It is unclear whether these changes result from chronic inflammation or whether they represent early events in the gluten response. We have addressed this in a model of in vivo gluten challenge. Methods Treated HLA-DQ2+ CD patients (n = 12) and HLA-DQ2+ gluten-sensitive control subjects (n = 12) on a gluten-free diet (GFD) were orally challenged with gluten for three days. Duodenal biopsies obtained before and after gluten challenge were subjected to immunohistochemistry. Single cell digests of duodenal biopsies from healthy controls (n = 4), treated CD (n = 3) and untreated CD (n = 3) patients were analyzed by flow cytometry. Results In treated CD patients, the gluten challenge increased the density of CD14+CD11c+ DCs, whereas the density of CD103+CD11c+ DCs and CD163+CD11c? macrophages decreased, and the density of CD1c+CD11c+ DCs remained unchanged. Most CD14+CD11c+ DCs co-expressed CCR2. The density of neutrophils also increased in the challenged mucosa, but in most patients no architectural changes or increase of CD3+ intraepithelial lymphocytes (IELs) were found. In control tissue no significant changes were observed. Conclusions Rapid accumulation of CD14+CD11c+ DCs is specific to CD and precedes changes in mucosal architecture, indicating that this DC subset may be directly involved in the immunopathology of the disease. The expression of CCR2 and CD14 on the accumulating CD11c+ DCs indicates that these cells are newly recruited monocytes.

References

[1]  Sollid LM (2002) Coeliac disease: dissecting a complex inflammatory disorder. Nat Rev Immunol 2: 647–655.
[2]  Jabri B, Sollid LM (2009) Tissue-mediated control of immunopathology in coeliac disease. Nat Rev Immunol 9: 858–870.
[3]  Walker MM, Murray JA (2011) An update in the diagnosis of coeliac disease. Histopathology 59: 166–179.
[4]  Raki M, Tollefsen S, Molberg O, Lundin KE, Sollid LM, et al. (2006) A unique dendritic cell subset accumulates in the celiac lesion and efficiently activates gluten-reactive T cells. Gastroenterology 131: 428–438.
[5]  Beitnes AC, Raki M, Lundin KE, Jahnsen J, Sollid LM, et al. (2011) Density of CD163(+) CD11c(+) dendritic cells increases and CD103(+) dendritic cells decreases in the coeliac lesion. Scand J Immunol 74: 186–194.
[6]  Brottveit M, Raki M, Bergseng E, Fallang LE, Simonsen B, et al. (2011) Assessing possible celiac disease by an HLA-DQ2-gliadin Tetramer Test. Am J Gastroenterol 106: 1318–1324.
[7]  Oberhuber G, Granditsch G, Vogelsang H (1999) The histopathology of coeliac disease: time for a standardized report scheme for pathologists. Eur J Gastroenterol Hepatol 11: 1185–1194.
[8]  Spits H, Borst J, Giphart M, Coligan J, Terhorst C, et al. (1984) HLA-DC antigens can serve as recognition elements for human cytotoxic T lymphocytes. Eur J Immunol 14: 299–304.
[9]  Micklem KJ, Dong Y, Willis A, Pulford KA, Visser L, et al. (1991) HML-1 antigen on mucosa-associated T cells, activated cells, and hairy leukemic cells is a new integrin containing the beta 7 subunit. Am J Pathol 139: 1297–1301.
[10]  Wang JE, Warris A, Ellingsen EA, Jorgensen PF, Flo TH, et al. (2001) Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immun 69: 2402–2406.
[11]  Huitfeldt HS, Brandtzaeg P (1985) Various keratin antibodies produce immunohistochemical staining of human myocardium and myometrium. Histochemistry 83: 381–389.
[12]  Jahnsen FL, Haraldsen G, Rugtveit J, Halstensen TS, Brandtzaeg P (1994) Differential interference contrast microscopy combined with immunofluorescence: a new method to phenotype eosinophils in situ. J Immunol Methods 173: 77–91.
[13]  Arentz-Hansen H, Korner R, Molberg O, Quarsten H, Vader W, et al. (2000) The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med 191: 603–612.
[14]  Shan L, Molberg O, Parrot I, Hausch F, Filiz F, et al. (2002) Structural basis for gluten intolerance in celiac sprue. Science 297: 2275–2279.
[15]  Molberg O, McAdam SN, Lundin KE, Sollid LM (2000) Studies of gliadin-specific T-cells in celiac disease. Methods Mol Med 41: 105–124.
[16]  Wong KL, Tai JJ, Wong WC, Han H, Sem X, et al. (2011) Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood 118: e16–e31.
[17]  Tallone T, Turconi G, Soldati G, Pedrazzini G, Moccetti T, et al. (2011) Heterogeneity of human monocytes: an optimized four-color flow cytometry protocol for analysis of monocyte subsets. J Cardiovasc Transl Res 4: 211–219.
[18]  Shantsila E, Wrigley B, Tapp L, Apostolakis S, Montoro-Garcia S, et al. (2011) Immunophenotypic characterisation of human monocyte subsets: Possible implications for cardiovascular disease pathophysiology. J Thromb Haemost 9: 1056–1066.
[19]  Leigh RJ, Marsh MN, Crowe P, Kelly C, Garner V, et al. (1985) Studies of intestinal lymphoid tissue. IX. Dose-dependent, gluten-induced lymphoid infiltration of coeliac jejunal epithelium. Scand J Gastroenterol 20: 715–719.
[20]  Marsh MN (1992) Gluten, major histocompatibility complex, and the small intestine. A molecular and immunobiologic approach to the spectrum of gluten sensitivity (‘celiac sprue’). Gastroenterology 102: 330–354.
[21]  Dhesi I, Marsh MN, Kelly C, Crowe P (1984) Morphometric analysis of small intestinal mucosa. II. Determination of lamina propria volumes; plasma cell and neutrophil populations within control and coeliac disease mucosae. Virchows Arch A Pathol Anat Histopathol 403: 173–180.
[22]  Marsh MN, Hinde J (1985) Inflammatory component of celiac sprue mucosa. I. Mast cells, basophils, and eosinophils. Gastroenterology 89: 92–101.
[23]  Schwartzkopff F, Petersen F, Grimm TA, Brandt E (2010) CXC chemokine ligand 4 (CXCL4) down-regulates CC chemokine receptor expression on human monocytes. Innate Immun.
[24]  Cheong C, Matos I, Choi JH, Dandamudi DB, Shrestha E, et al. (2010) Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209(+) dendritic cells for immune T cell areas. Cell 143: 416–429.
[25]  Schuppan D, Junker Y, Barisani D (2009) Celiac disease: from pathogenesis to novel therapies. Gastroenterology 137: 1912–1933.
[26]  Troncone R, Jabri B (2011) Coeliac disease and gluten sensitivity. J Intern Med 269: 582–590.
[27]  Rakhimova M, Esslinger B, Schulze-Krebs A, Hahn EG, Schuppan D, et al. (2009) In vitro differentiation of human monocytes into dendritic cells by peptic-tryptic digest of gliadin is independent of genetic predisposition and the presence of celiac disease. J Clin Immunol 29: 29–37.
[28]  Palova-Jelinkova L, Rozkova D, Pecharova B, Bartova J, Sediva A, et al. (2005) Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J Immunol 175: 7038–7045.
[29]  Maiuri L, Ciacci C, Ricciardelli I, Vacca L, Raia V, et al. (2003) Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet 362: 30–37.
[30]  Diosdado B, van BH, Strengman E, Franke L, van OE, et al. (2007) Neutrophil recruitment and barrier impairment in celiac disease: a genomic study. Clin Gastroenterol Hepatol 5: 574–581.
[31]  Halstensen TS, Scott H, Fausa O, Brandtzaeg P (1993) Gluten stimulation of coeliac mucosa in vitro induces activation (CD25) of lamina propria CD4+ T cells and macrophages but no crypt-cell hyperplasia. Scand J Immunol 38: 581–590.
[32]  Raki M, Molberg O, Tollefsen S, Lundin KE, Sollid LM (2005) The effects of atorvastatin on gluten-induced intestinal T cell responses in coeliac disease. Clin Exp Immunol 142: 333–340.
[33]  Bodd M, Raki M, Tollefsen S, Fallang LE, Bergseng E, et al. (2010) HLA-DQ2-restricted gluten-reactive T cells produce IL-21 but not IL-17 or IL-22. Mucosal Immunol 3: 594–601.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133