Background Research into the etiology of breast cancer has recently focused on the role of the immunity and inflammation. The proinflammatory cytokines IL-17A and IL-17F can mediate inflammation and cancer. To evaluate the influences of IL-17A and IL-17F gene polymorphisms on the risk of sporadic breast cancer, a case-control study was conducted in Chinese Han women. Methodology and Principal Findings We genotyped three single-nucleotide polymorphisms (SNPs) in IL-17A (rs2275913, rs3819025 and rs3748067) and five SNPs in IL-17F (rs7771511, rs9382084, rs12203582, rs1266828 and rs763780) to determine the haplotypes in 491 women with breast cancer and 502 healthy individuals. The genotypes were determined using the SNaPshot technique. The differences in the genotypic distribution between breast cancer patients and healthy controls were analyzed with the Chi-square test for trends. For rs2275913 in IL-17A, the frequency of the AA genotype was higher in patients than controls (P = 0.0016). The clinical features analysis demonstrated significant associations between IL-17 SNPs and tumor protein 53 (P53), progesterone receptor (PR), human epidermal growth factor receptor 2 (Her-2) and triple-negative (ER-/PR-/Her-2-) status. In addition, the haplotype analysis indicated that the frequency of the haplotype Ars2275913Grs3819025Grs3748067, located in the IL-17A linkage disequilibrium (LD) block, was higher in patients than in controls (P = 0.0471 after correction for multiple testing). Conclusions and Significance Our results suggested that SNPs in IL-17A but not IL-17F were associated with the risk of breast cancer. Both IL-17A and IL-17F gene polymorphisms may provide valuable information for predicting the prognosis of breast cancer in Chinese women.
References
[1]
Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, et al. (2010) Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature 468: 98–102.
[2]
Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140: 883–899.
[3]
Park H, Li Z, Yang XO, Chang SH, Nurieva R, et al. (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6: 1133–1141.
[4]
Castellanos-Rubio A, Santin I, Irastorza I, Castano L, Carlos Vitoria J, et al. (2009) TH17 (and TH1) signatures of intestinal biopsies of CD patients in response to gliadin. Autoimmunity 42: 69–73.
[5]
Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J, et al. (2008) Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci U S A 105: 15505–15510.
[6]
Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, et al. (2010) Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol 184: 1630–1641.
[7]
Kawaguchi M, Adachi M, Oda N, Kokubu F, Huang SK (2004) IL-17 cytokine family. J Allergy Clin Immunol 114: 1265–1273; quiz 1274.
[8]
Aggarwal S, Ghilardi N, Xie MH, de Sauvage FJ, Gurney AL (2003) Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem 278: 1910–1914.
[9]
Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, et al. (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441: 235–238.
[10]
Kato T, Furumoto H, Ogura T, Onishi Y, Irahara M, et al. (2001) Expression of IL-17 mRNA in ovarian cancer. Biochem Biophys Res Commun 282: 735–738.
[11]
Alexandrakis MG, Pappa CA, Miyakis S, Sfiridaki A, Kafousi M, et al. (2006) Serum interleukin-17 and its relationship to angiogenic factors in multiple myeloma. Eur J Intern Med 17: 412–416.
[12]
Zhu X, Mulcahy LA, Mohammed RA, Lee AH, Franks HA, et al. (2008) IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res 10: R95.
[13]
Zhang B, Rong G, Wei H, Zhang M, Bi J, et al. (2008) The prevalence of Th17 cells in patients with gastric cancer. Biochem Biophys Res Commun 374: 533–537.
[14]
Kawaguchi M, Takahashi D, Hizawa N, Suzuki S, Matsukura S, et al. (2006) IL-17F sequence variant (His161Arg) is associated with protection against asthma and antagonizes wild-type IL-17F activity. J Allergy Clin Immunol 117: 795–801.
[15]
Nordang GB, Viken MK, Hollis-Moffatt JE, Merriman TR, Forre OT, et al. (2009) Association analysis of the interleukin 17A gene in Caucasian rheumatoid arthritis patients from Norway and New Zealand. Rheumatology (Oxford) 48: 367–370.
[16]
Arisawa T, Tahara T, Shibata T, Nagasaka M, Nakamura M, et al. (2008) The influence of polymorphisms of interleukin-17A and interleukin-17F genes on the susceptibility to ulcerative colitis. J Clin Immunol 28: 44–49.
[17]
Shibata T, Tahara T, Hirata I, Arisawa T (2009) Genetic polymorphism of interleukin-17A and -17F genes in gastric carcinogenesis. Hum Immunol 70: 547–551.
[18]
Cole SW (2009) Chronic inflammation and breast cancer recurrence. J Clin Oncol 27: 3418–3419.
[19]
Cabodi S, Taverna D (2010) Interfering with inflammation: a new strategy to block breast cancer self-renewal and progression? Breast Cancer Res 12: 305.
[20]
Horlock C, Stott B, Dyson PJ, Morishita M, Coombes RC, et al. (2009) The effects of trastuzumab on the CD4+CD25+FoxP3+ and CD4+IL17A+ T-cell axis in patients with breast cancer. Br J Cancer 100: 1061–1067.
[21]
Lialiaris TS, Georgiou G, Sivridis E, Kareli D, Tripsiannis G, et al. (2010) Prognostic and predictive factors of invasive ductal breast carcinomas. J Buon 15: 79–88.
[22]
Stendahl M, Ryden L, Nordenskjold B, Jonsson PE, Landberg G, et al. (2006) High progesterone receptor expression correlates to the effect of adjuvant tamoxifen in premenopausal breast cancer patients. Clin Cancer Res 12: 4614–4618.
[23]
Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109: 1721–1728.
[24]
Arslan C, Sari E, Aksoy S, Altundag K (2011) Variation in hormone receptor and HER-2 status between primary and metastatic breast cancer: review of the literature. Expert Opin Ther Targets 15: 21–30.
[25]
Dawood S (2010) Triple-negative breast cancer: epidemiology and management options. Drugs 70: 2247–2258.
[26]
Chen JM, Ferec C, Cooper DN (2006) A systematic analysis of disease-associated variants in the 3′ regulatory regions of human protein-coding genes II: the importance of mRNA secondary structure in assessing the functionality of 3′ UTR variants. Hum Genet 120: 301–333.
[27]
McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, et al. (2005) Reporting recommendations for tumor marker prognostic studies. J Clin Oncol 23: 9067–9072.