全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Adaptation of Mouse Skeletal Muscle to Long-Term Microgravity in the MDS Mission

DOI: 10.1371/journal.pone.0033232

Full-Text   Cite this paper   Add to My Lib

Abstract:

The effect of microgravity on skeletal muscles has so far been examined in rat and mice only after short-term (5–20 day) spaceflights. The mice drawer system (MDS) program, sponsored by Italian Space Agency, for the first time aimed to investigate the consequences of long-term (91 days) exposure to microgravity in mice within the International Space Station. Muscle atrophy was present indistinctly in all fiber types of the slow-twitch soleus muscle, but was only slightly greater than that observed after 20 days of spaceflight. Myosin heavy chain analysis indicated a concomitant slow-to-fast transition of soleus. In addition, spaceflight induced translocation of sarcolemmal nitric oxide synthase-1 (NOS1) into the cytosol in soleus but not in the fast-twitch extensor digitorum longus (EDL) muscle. Most of the sarcolemmal ion channel subunits were up-regulated, more in soleus than EDL, whereas Ca2+-activated K+ channels were down-regulated, consistent with the phenotype transition. Gene expression of the atrophy-related ubiquitin-ligases was up-regulated in both spaceflown soleus and EDL muscles, whereas autophagy genes were in the control range. Muscle-specific IGF-1 and interleukin-6 were down-regulated in soleus but up-regulated in EDL. Also, various stress-related genes were up-regulated in spaceflown EDL, not in soleus. Altogether, these results suggest that EDL muscle may resist to microgravity-induced atrophy by activating compensatory and protective pathways. Our study shows the extended sensitivity of antigravity soleus muscle after prolonged exposition to microgravity, suggests possible mechanisms accounting for the resistance of EDL, and individuates some molecular targets for the development of countermeasures.

References

[1]  Schiaffino S, Sandri M, Murgia M (2007) Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 22: 269–278.
[2]  Fitts RH, Riley DR, Widrick JJ (2001) Functional and structural adaptations of skeletal muscle to microgravity. J Exp Biol 204: 3201–3208.
[3]  Harrison BC, Allen DL, Girten B, Stodieck LS, Kostenuik PJ, et al. (2003) Skeletal muscle adaptations to microgravity exposure in the mouse. J Appl Physiol 95: 2462–2470.
[4]  Jiang B, Ohira Y, Roy RR, Nguyen Q, Ilyina-Kakueva EI, et al. (1992) Adaptation of fibers in fast-twitch muscles of rats to spaceflight and hindlimb suspension. J Appl Physiol 73,: Suppl58S–65S.
[5]  Ohira Y, Jiang B, Roy RR, Oganov V, Ilyina-Kakueva E, et al. (1992) Rat soleus muscle fiber responses to 14 days of spaceflight and hindlimb suspension. J Appl Physiol 73,: Suppl51S–57S.
[6]  Ohira Y, Yoshinaga T, Nomura T, Kawano F, Ishihara A, et al. (2002) Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number. Adv Space Res 30: 777–781.
[7]  Desplanches D, Mayet MH, Ilyina-Kakueva EI, Sempore B, Flandrois R (1990) Skeletal muscle adaptation in rats flown on Cosmos 1667. J Appl Physiol 68: 48–52.
[8]  Edgerton VR, Zhou M-Y, Ohira Y, Klitgaard H, Jiang B, et al. (1995) Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. J Appl Physiol 78: 1733–1739.
[9]  Ohira Y, Yoshinaga T, Ohara M, Nonaka I, Yoshioka T, et al. (1999) Myonuclear domain and myosin phenotype in human soleus following bed rest with or without loading. J Appl Physiol 87: 1776–1785.
[10]  Yamashita-Goto K, Okuyama R, Kawasaki K, Fujita K, Yamada T, et al. (2001) Maximal and submaximal forces of slow fibers in human soleus after bed rest. J Appl Physiol 91: 417–424.
[11]  Morey-Holton ER, Hill EL, Souza KA (2007) Animals and spaceflight: from survival to understanding. J Muscoloskelet Neuronal Interact 7: 17–25.
[12]  Staron RS, Kraemer WJ, Hikida RS, Reed DW, Murray JD, et al. (1998) Comparison of soleus muscles from rats exposed to microgravity for 10 versus 14 days. Histochem Cell Biol 110: 73–80.
[13]  Allen DL, Bandstra ER, Harrison BC, Thorng S, Stodieck LS, et al. (2009) Effects of spaceflight on murine skeletal muscle gene expression. J Appl Physiol 106: 582–595.
[14]  Nikawa T, Ishidoh K, Hirasaka K, Ishihara I, Ikemoto M, et al. (2004) Skeletal muscle gene expression in space-flown rats. FASEB J 18: 522–524.
[15]  Cancedda R, Pignataro S, Alberici G, Tenconi C (2002) Mice Drawer System: phase c/d development and perspective. J Gravit Physiol 9: P337–P338.
[16]  Masuda H, Tsujimura A, Yoshioka M, Arai Y, Kuboki Y, et al. (1997) Bone mass loss due to estrogen deficiency is compensated in transgenic mice overexpressing human osteoblast stimulating factor-1. Biochem Biophys Res Commun 238: 528–533.
[17]  Rudnick J, Püttmann B, Tesch PA, Alkner B, Schoser BG, et al. (2004) Differential expression of nitric oxide synthases (NOS 1-3) in human skeletal muscle following exercise countermeasure during 12 weeks of bed rest. FASEB J 18: 1228–1230.
[18]  Salanova M, Schiffl G, Blottner D (2009) Atypical fast SERCA1a protein expression in slow myofibers and differential S-nitrosylation prevented by exercise during long term bed rest. Histochem Cell Biol 132: 383–394.
[19]  Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, et al. (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10: 197–205.
[20]  Danieli-Betto D, Esposito A, Germinario E, Sandonà D, Martinello T, et al. (2005) Deficiency of α-sarcoglycan differently affects fast- and slow-twitch skeletal muscles. Am J Physiol Regul Integr Comp Physiol 289: R1328–R1337.
[21]  Desaphy J-F, Pierno S, Liantonio A, Giannuzzi V, Digennaro C, et al. (2010) Antioxidant treatment of hindlimb-unloaded mouse counteracts fiber type transition but not atrophy of disused muscles. Pharmacol Res 61: 553–563.
[22]  Kallen RG, Sheng Z-H, Yang J, Chen LQ, Rogart RB, et al. (1990) Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron 4: 233–242.
[23]  Kawano F, Matsuoka Y, Oke Y, Higo Y, Terada M, et al. (2007) Role(s) of nucleoli and phosphorylation of ribosomal protein S6 and/or HSP27 in the regulation of muscle mass. Am J Physiol 293: C35–C44.
[24]  Ohira T, Wang XD, Terada M, Kawano F, Nakai N, et al. (2011) Region-specific responses of adductor longus muscle to gravitational load-dependent activity in Wistar Hannover rats. PLoS ONE 6: e21044.
[25]  Wang XD, Kawano F, Matsuoka Y, Fukunaga K, Terada M, et al. (2006) Mechanical load-dependent regulation of satellite cell and fiber size in rat soleus muscle. Am J Physiol Cell Physiol 290: C981–C989.
[26]  Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82: 743–752.
[27]  Kobzik L, Reid MB, Bredt DS, Stamler JS (1994) Nitric oxide in skeletal muscle. Nature 372: 546–548.
[28]  Ishihara A, Fujino H, Nagatomo F, Takeda I, Ohira Y (2008) Gene expression levels of heat shock proteins in the soleus and plantaris muscles of rats after hindlimb suspension or spaceflight. J Physiol Sci 58: 413–417.
[29]  Pierno S, Desaphy JF, Liantonio A, De Luca A, Zarrilli A, et al. (2007) Disuse of rat muscle in vivo reduces protein kinase C activity controlling the sarcolemma chloride conductance. J Physiol 584: 983–995.
[30]  Desaphy JF, Pierno S, Liantonio A, De Luca A, Didonna MP, et al. (2005) Recovery of the soleus muscle after short- and long-term disuse induced by hindlimb unloading: effects on the electrical properties and myosin heavy chain profile. Neurobiol Dis 18: 356–365.
[31]  Pierno S, Desaphy JF, Liantonio A, De Bellis M, Bianco G, et al. (2002) Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse. Brain 125: 1510–1521.
[32]  Musarò A, Dobrowolny G, Rosenthal N (2007) The neuroprotective effects of a locally acting IGF-1 isoform. Exp Gerontol 42: 76–80.
[33]  Scicchitano BM, Rizzuto E, Musarò A (2009) Counteracting muscle wasting in aging and neuromuscular diseases: the critical role of IGF-1. Aging (Albany NY) 1: 451–457.
[34]  Serrano AL, Baeza-Raja B, Perdiguero E, Jardí M, Mu?oz-Cánoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7: 33–44.
[35]  Washington TA, White JP, Davis JM, Wilson LB, Lowe LL, et al. (2011) Skeletal muscle mass recovery from atrophy in IL-6 knockout mice. Acta Physiol (Oxf) 202: 657–669.
[36]  Naito H, Powers SK, Demirel HA, Sugiura T, Dodd SL, et al. (2000) Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol 88: 359–363.
[37]  Takeda I, Fujino H, Murakami S, Kondo H, Nagatomo F, et al. (2009) Thermal reconditioning prevents fiber type transformation of the unloading induced-atrophied muscle in rats. J Muscle Res Cell Motil 30: 145–152.
[38]  Goto K, Honda M, Kobayashi T, Uehara K, Kojima A, et al. (2004) Heat stress facilitates the recovery of atrophied soleus muscle in rat. Jpn J Physiol 54: 285–293.
[39]  Goto K, Okuyama R, Sugiyama H, Honda M, Kobayashi T, et al. (2003) Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflügers Arch 447: 247–253.
[40]  Ohno Y, Yamada S, Sugiura T, Ohira Y, Yoshioka T, et al. (2011) Possible role of NF-κB signals in heat stress-associated increase in protein content of cultured C2C12 cells. Cells Tissues Organs. in press.
[41]  Kobayashi T, Goto K, Kojima A, Akema T, Uehara K, et al. (2005) Possible role of calcineurin in heating-related increase of rat muscle mass. Biochem Biophys Res Commun 331: 1301–1309.
[42]  Miura H, Hashida K, Sudo H, Awa Y, Takarada-Iemata M, et al. (2010) Deletion of Herp facilitates degradation of cytosolic proteins. Genes Cells 15: 843–853.
[43]  Carlson CJ, Booth FW, Gordon SE (1999) Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol 277: R601–R606.
[44]  Haida P, Fowler WM Jr, Abresch RT, Larson DB, Sharman RB, et al. (1989) Effect of hindlimb suspension on young and adult skeletal muscle. I. Normal mice. Exp Neurol 103: 68–76.
[45]  Criswell DS, Booth FW, DeMayo F, Schwartz RJ, et al. (1998) Overexpression of IGF-1 in skeletal muscle of transgenic mice does not prevent unloading-induced atrophy. Am J Physiol 275: E373–E379.
[46]  Stelzer JE, Widrick JJ (2003) Effects of hindlimb suspension on the functional properties of slow and fast soleus fibers from three strains of mice. J Appl Physiol 95: 2425–2433.
[47]  Caiozzo VJ, Baker MJ, Herrick RE, Tao M, Baldwin KM (1994) Effect of spaceflight on skeletal muscle: mechanical properties and myosin isoform content of a slow muscle. J Appl Physiol 76: 1764–1773.
[48]  Allen DL, Yasui W, Tanaka T, Ohira Y, Nagaoka S, et al. (1996) Myonuclear number and myosin heavy chain expression in rat soleus single muscle fibers after spaceflight. J Appl Physiol 81: 145–151.
[49]  Hikida RS, Van Nostran S, Murray JD, Staron RS, Gordon SE, et al. (1997) Myonuclear loss in atrophied soleus muscle fibers. Anat Rec 247: 350–354.
[50]  Kraemer WJ, Staron RS, Gordon SE, Volek JS, Koziris LP, et al. (2000) The effects of 10 days of spaceflight on the shuttle Endeavor on predominantly fast-twitch muscles in the rat. Histochem Cell Biol 114: 349–355.
[51]  Desplanches D, Mayet MH, Ilyina-Kakueva EI, Frutose J, Flandrois R (1991) Structural and metabolic properties of rat exposed to weightlessness aboard Cosmos 1887. Eur J Appl Physiol 63: 288–292.
[52]  Schuenke MD, Reed DW, Kraemer WJ, Staron RS, Volek JS, et al. (2009) Effects of 14 days of microgravity on fast hindlimb and diaphragm muscles of the rat. Eur J Appl Physiol 106: 885–892.
[53]  Riley DA, Ellis S, Slocum GR, Sedlak FR, Bain JLW, et al. (1996) In-flight and postflight changes in skeletal muscles of SLS-1 and SLS-2 spaceflown rats. J Appl Physiol 81: 133–144.
[54]  Hansen G, Martinuk KJB, Bell GJ, MacLean IM, Martin T, et al. (2004) Effects of spaceflight on myosin heavy-chain content, fibre morphology and succinate dehydrogenase activity in rat diaphragm. Pflugers Arch - Eur J Physiol 448: 239–247.
[55]  Stevens L, Firinga C, Gohlsch B, Bastide B, Mounier Y, et al. (2000) Effects of unweighting and clenbuterol on myosin light and heavy chains in fast and slow muscles of rat. Am J Physiol 279: C1558–C1563.
[56]  Kawano F, Takeno Y, Nakai N, Higo Y, Terada M, et al. (2008) Essential role of satellite cells in the growth of rat soleus muscle fibers. Am J Physiol 295: C458–C467.
[57]  Nakane M, Schmidt HH, Pollock JS, F?rstermann U, Murad F (1993) Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett 316: 175–180.
[58]  Silvagno F, Xia H, Bredt DS (1996) Neuronal nitric oxide synthase-μ, an alternatively spliced isoform expressed in differentiated skeletal muscle. J Biol Chem 271: 11204–11208.
[59]  Suzuki N, Motohashi N, Uezumi A, Fukada S, Yoshimura T, et al. (2007) NO production results in suspension-induced muscle atrophy through dislocation of neuronal NOS. J Clin Invest 117: 2468–2476.
[60]  Tidball JG, Lavergne E, Lau KS, Spencer MJ, Stull JT, et al. (1998) Mechanical loading regulates NOS expression and activity in developing and adult skeletal muscle. Am J Physiol 275: C260–C266.
[61]  Yu Z, Zhang P, Hannink M, Stamler JS, Yan Z (2008) Fiber type specific nitric oxide synthase protects against myofibers against cachectic stimuli. PLoS ONE 7: e2086.
[62]  Martin TP, Edgerton VR, Grindeland RE (1988) Influence of spaceflight on rat skeletal muscle. J Appl Physiol 65: 2318–2325.
[63]  Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, et al. (2007) FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: 458–471.
[64]  Zhao J, Brault JJ, Schild A, Cao P, Sandri M, et al. (2007) FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 6: 472–483.
[65]  Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, et al. (2009) Autophagy is required to maintain muscle mass. Cell Metab 10: 507–515.
[66]  Fitts RH, Trappe SW, Costill DL, Gallagher PM, et al. (2010) Prolonged space flight-induced alterations in the structure and function of human skeletal muscle fibres. J Physiol 588: 3567–3592.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133