全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On Positive Solutions of Second-order Three-point Boundary Value Problem
二阶三点边值问题的正解

Keywords: Positive solutionszz,Conezz,Fixed point indexzz,First eigenvaluezz
正解
,,不动点指数,第一特征值.,二阶三点边值问题,正解存在,Boundary,Value,Problem,充分性条件,最佳,第一特征值,线性问题,指数理论,不动点,积分方程,Hammerstein,转化,函数,Green,利用,常数,多重性,存在性

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, the existence of positive solutions of the second-order three-point boundary value problem $-u'(t)=b(t)f(u(t))$ for all $t\in0,1]$ subject to $u'(0)=0$, $u(1)={\alpha}u({\eta})$ is studied, where $\alpha, \eta\in(0,1)$ are given, $f\in C\big(0,\infty),0,\infty)\big)$, $b\in C\big(0,1],0,\infty)\big)$ and there exists $t_0\in0,1]$ such that $b(t_0)>0$. The problem is transformed into the Hammerstein's integral equation with its corresponding Green's funtion. By applying the fixed point index theory, authors obtain the optimal sufficient conditions for the existence of single and multiple positive solutions of the above mentioned problem concerning the first eigenvalue of the relevant linear problem.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133