|
数学物理学报(A辑) 2004
On the Existence of Fixed Points for Asymptotically Nonexpansive Type Semigroups in Banach Spaces
|
Abstract:
设C是具有弱一致正规结构的Banach空间X的非空弱紧凸子集,T ={T(t):t∈S}是渐近非扩张型半群,且每个T(t)在C上连续.该文证明了如下结论:(i)若X是一致凸的,则F(T)非空;(ii)若T ={T(t):t∈S}满足liminfS ∈t→∞ ‖T(t)‖ <+∞,且在C上弱渐近正则,则F(T)非空,其中,‖T(t)‖ 是T(t)的精确的Lipschitz常数,F(T)是T(t),t∈S的所有公共不动点之集