|
数学物理学报(A辑) 2004
Duality in Vector Optimization of Set-valued Maps with Super Efficient Solutions
|
Abstract:
A generalized Kuhn-Tucker optimality condition of constrained vector optimization of set-valued maps with super efficiency is obtained with the help of the Contingent tangent derivatives which are developed with the aid of Contingent tangent cone and the epigraphy of the set-valued map, with which the weak duality theorems, direct duality theorems and the converse theorems for Wolfe type and Mond-Weir type duality are established.