Allergens are initiators of both innate and adaptive immune responses. They are recognised at the site of entry by epithelial and dendritic cells (DCs), both of which activate innate inflammatory circuits that can collectively induce Th2 immune responses. In an attempt to have a better understanding of the role of carbohydrates in the recognition and uptake of allergens by the innate immune system, we defined common glycosylation patterns in major allergens. This was done using labelled lectins and showed that allergens like Der p 1 (Dermatophagoides pteronyssinus group 1), Fel d 1 (Felis domisticus), Ara h 1 (Arachis hypogaea), Der p 2 (Dermatophagoides pteronyssinus group 2), Bla g 2 (Blattella germanica) and Can f 1 (Canis familiaris) are glycosylated and that the main dominant sugars on these allergens are 1–2, 1–3 and 1–6 mannose. These observations are in line with recent reports implicating the mannose receptor (MR) in allergen recognition and uptake by DCs and suggesting a major link between glycosylation and allergen recognition. We then looked at TSLP (Thymic Stromal Lymphopoietin) cytokine secretion by lung epithelia upon encountering natural Der p 1 allergen. TSLP is suggested to drive DC maturation in support of allergic hypersensitivity reactions. Our data showed an increase in TSLP secretion by lung epithelia upon stimulation with natural Der p 1 which was carbohydrate dependent. The deglycosylated preparation of Der p 1 exhibited minimal uptake by DCs compared to the natural and hyperglycosylated recombinant counterparts, with the latter being taken up more readily than the other preparations. Collectively, our data indicate that carbohydrate moieties on allergens play a vital role in their recognition by innate immune cells, implicating them in downstream deleterious Th2 cell activation and IgE production.
References
[1]
Schaible B, Schaffer K, Taylor CT (2010) Hypoxia, innate immunity and infection in the lung. Respiratory Physiology & Neurobiology 174: 235–243.
[2]
Kato A, Favoreto S, Avila PC, Schleimer RP (2007) TLR3- and Th2 Cytokine-Dependent Production of Thymic Stromal Lymphopoietin in Human Airway Epithelial Cells. The Journal of Immunology 179: 1080–1087.
[3]
Hammad H, Lambrecht BN (2008) Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nat Rev Immunol 8: 193–204.
[4]
Chaudhuri N, Sabroe I (2008) Basic science of the innate immune system and the lung. Paediatric respiratory reviews 9: 236–242.
[5]
He R, Geha RS (2010) Thymic stromal lymphopoietin. Annals of the New York Academy of Sciences 1183: 13–24.
[6]
Ito T, Wang Y-H, Duramad O, Hori T, Delespesse GJ, et al. (2005) TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. The Journal of Experimental Medicine 202: 1213–1223.
[7]
Rochman I, Watanabe N, Arima K, Liu Y-J, Leonard WJ (2007) Cutting Edge: Direct Action of Thymic Stromal Lymphopoietin on Activated Human CD4+ T Cells. The Journal of Immunology 178: 6720–6724.
[8]
Reche PA, Soumelis V, Gorman DM, Clifford T, Liu M-r, et al. (2001) Human Thymic Stromal Lymphopoietin Preferentially Stimulates Myeloid Cells. The Journal of Immunology 167: 336–343.
[9]
Comeau MR, Ziegler SF (2009) The influence of TSLP on the allergic response. Mucosal Immunol 3: 138–147.
[10]
Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, et al. (2002) Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP. Nat Immunol 3: 673–680.
[11]
Zhou B, Comeau MR, Smedt TD, Liggitt HD, Dahl ME, et al. (2005) Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat Immunol 6: 1047–1053.
[12]
Ying S, O?'Connor B, Ratoff J, Meng Q, Mallett K, et al. (2005) Thymic Stromal Lymphopoietin Expression Is Increased in Asthmatic Airways and Correlates with Expression of Th2-Attracting Chemokines and Disease Severity. The Journal of Immunology 174: 8183–8190.
[13]
Adams EW, Ratner DM, Seeberger PH, Hacohen N (2008) Carbohydrate-Mediated Targeting of Antigen to Dendritic Cells Leads to Enhanced Presentation of Antigen to T Cells. ChemBioChem 9: 294–303.
[14]
Erbacher A, Gieseke F, Handgretinger R, Müller I (2009) Dendritic cells: Functional aspects of glycosylation and lectins. Human Immunology 70: 308–312.
[15]
Royer P-J, Emara M, Yang C, Al-Ghouleh A, Tighe P, et al. (2010) The Mannose Receptor Mediates the Uptake of Diverse Native Allergens by Dendritic Cells and Determines Allergen-Induced T Cell Polarization through Modulation of IDO Activity. J Immunol 185: 1522–1531.
[16]
Gazi U, Martinez-Pomares L (2009) Influence of the mannose receptor in host immune responses. Immunobiology 214: 554–561.
[17]
Deslee Gt, Charbonnier A-S, Hammad H, Angyalosi G, Tillie-Leblond I, et al. (2002) Involvement of the mannose receptor in the uptake of der p 1, a major mite allergen, by human dendritic cells. Journal of Allergy and Clinical Immunology 110: 763–770.
[18]
Kerrigan AM, Brown GD (2009) C-type lectins and phagocytosis. Immunobiology 214: 562–575.
[19]
Taylor PR, Gordon S, Martinez-Pomares L (2005) The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends in Immunology 26: 104–110.
[20]
Shakib F, Ghaemmaghami AM, Sewell HF (2008) The molecular basis of allergenicity. Trends in Immunology 29: 633–642.
[21]
Furmonaviciene R, Sutton BJ, Glaser F, Laughton CA, Jones N, et al. (2005) pp. 4201–4204. An attempt to define allergen-specific molecular surface features: a bioinformatic approach.
[22]
Huby RDJ, Dearman RJ, Kimber I (2000) pp. 235–246. Why Are Some Proteins Allergens?.
[23]
Wills-Karp M, Nathan A, Page K, Karp CL (2009) New insights into innate immune mechanisms underlying allergenicity. Mucosal Immunol 3: 104–110.
[24]
Meno K, Thorsted PB, Ipsen H, Kristensen O, Larsen JN, et al. (2005) The Crystal Structure of Recombinant proDer p 1, a Major House Dust Mite Proteolytic Allergen. J Immunol 175: 3835–3845.
[25]
Poltl G, Ahrazem O, Paschinger K, Ibanez MD, Salcedo G, et al. (2007) pp. 220–230. Molecular and immunological characterization of the glycosylated orange allergen Cit s 1.
[26]
F?tisch K, Vieths S (2001) N- and O-linked oligosaccharides of allergenic glycoproteins. Glycoconjugate Journal 18: 373–390.
[27]
Altmann F (2007) The Role of Protein Glycosylation in Allergy. International Archives of Allergy and Immunology 142: 99–115.
[28]
Chunsheng J, Brigitte H, Wolfgang H, Johannes S, Friedrich A (2008) Affinity of IgE and IgG against cross-reactive carbohydrate determinants on plant and insect glycoproteins. The Journal of allergy and clinical immunology 121: 185–190.e182.
[29]
van Ree R, Cabanes-Macheteau M, Akkerdaas J, Milazzo J-P, Loutelier-Bourhis C, et al. (2000) pp. 11451–11458. Beta(1,2)-Xylose and alpha (1,3)-Fucose Residues Have a Strong Contribution in IgE Binding to Plant Glycoallergens.
[30]
Horlock C, Shakib F, Mahdavi J, Jones NS, Sewell HF, et al. (2007) Analysis of proteomic profiles and functional properties of human peripheral blood myeloid dendritic cells, monocyte-derived dendritic cells and the dendritic cell-like KG-1 cells reveals distinct characteristics. Genome Biology 8: R: 30.31.R: 30.12
[31]
Jacquet A, Magi M, Petry H, Bollen A (2002) High-level expression of recombinant house dust mite allergen Der p 1 in Pichia pastoris. Clinical & Experimental Allergy 32: 1048–1053.
[32]
Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews 24: 45–66.
[33]
van Oort E, de Heer PG, van Leeuwen WA, Derksen NIL, Muller M, et al. (2002) Maturation of Pichia pastoris-derived recombinant pro-Der p 1 induced by deglycosylation and by the natural cysteine protease Der p 1 from house dust mite. European Journal of Biochemistry 269: 671–679.
[34]
Staudacher E, Altmann F, Wilson IBH, M?rz L (1999) Fucose in N-glycans: from plant to man. Biochimica et Biophysica Acta (BBA) - General Subjects 1473: 216–236.
[35]
Altmann F (2007) The Role of Protein Glycosylation in Allergy. International Archives of Allergy and Immunology 142: 99–115.
[36]
Lanfranco MF, Loayza-Muro R, Clark D, Nú?ez R, Zavaleta AI, et al. (2008) Expression and substrate specificity of a recombinant cysteine proteinase B of Leishmania braziliensis. Molecular and Biochemical Parasitology 161: 91–100.
[37]
Smagur J, Guzik K, Bzowska M, Kuzak M, Zarebski M, et al. (2009) Staphylococcal cysteine protease staphopain B (SspB) induces rapid engulfment of human neutrophils and monocytes by macrophages. Biological Chemistry 390: 361–371.
[38]
Goll DE, Thompson VF, Li H, Wei WEI, Cong J (2003) pp. 731–801. The Calpain System.
[39]
Ghaemmaghami AM, Gough L, Sewell HF, Shakib F (2002) The proteolytic activity of the major dust mite allergen Der p 1 conditions dendritic cells to produce less interleukin-12: allergen-induced Th2 bias determined at the dendritic cell level. Clinical & Experimental Allergy 32: 1468–1475.
[40]
Bühling F, Fengler A, Brandt W, Welte T, Ansorge S, et al. (2002) Review: Novel Cysteine Proteases of the Papain Family. Cellular Peptidases in Immune Functions and Diseases 2 241–254.
[41]
Ishihara H, Takahashi N, Oguri S, Tejima S (1979) Complete structure of the carbohydrate moiety of stem bromelain. An application of the almond glycopeptidase for structural studies of glycopeptides. Journal of Biological Chemistry 254: 10715–10719.
[42]
Perlin AS (2006) Glycol-Cleavage Oxidation. In: Derek H, editor. Advances in Carbohydrate Chemistry and Biochemistry. Academic Press. pp. 183–250.
[43]
Lipniunas P, Angel A-S, Erlansson K, Lindh F, Nilsson B (1992) Mass spectrometry of high-mannose oligosaccharides after trifluoroacetolysis and periodate oxidation. Analytical Biochemistry 200: 58–67.
[44]
Philip E, Thorpe PMW, PhillipKnowles P, MicheleRelf G, AlexBrown NF, GrahamWatson J, DavidBlakey C, DavidNewell R (1988) Improved Antitumor Effects of Immunotoxins Prepared with Deglycosylated Ricin A-Chain and Hindered Disulfide Linkages. Cancer Res 48: 6396–6403.
[45]
Okano M, Satoskar AR, Nishizaki K, Abe M, Harn DA Jr (1999) Induction of Th2 Responses and IgE Is Largely Due to Carbohydrates Functioning as Adjuvants on Schistosoma mansoni Egg Antigens. J Immunol 163: 6712–6717.
[46]
Aoki R, Saito A, Azakami H, Kato A (2010) Effects of Various Saccharides on the Masking of Epitope Sites and Uptake in the Gut of Cedar Allergen Cry j 1?Saccharide Conjugates by a Naturally Occurring Maillard Reaction. Journal of Agricultural and Food Chemistry 58: 7986–7990.
[47]
Kimura YKM, Maeda M, Okano M, Yokoyama M, Kino K (2008) Glycoform analysis of Japanese cypress pollen allergen, Cha o 1: a comparison of the glycoforms of cedar and cypress pollen allergens. Biosci Biotechnol Biochem 72: 485–491.
[48]
Sepp?l? U, Selby D, Monsalve R, King TP, Ebner C, et al. (2009) Structural and immunological characterization of the N-glycans from the major yellow jacket allergen Ves v 2: The N-glycan structures are needed for the human antibody recognition. Molecular Immunology 46: 2014–2021.
[49]
Plasencia MD, Isailovic D, Merenbloom SI, Mechref Y, Clemmer DE (2008) Resolving and Assigning N-Linked Glycan Structural Isomers from Ovalbumin by IMS-MS. Journal of the American Society for Mass Spectrometry 19: 1706–1715.
[50]
Lauer Ia, Foetisch Ka, Kolarich Db, Ballmer-Weber BKc, Conti Ad, Altmann Fb, Vieths Sa, Scheurer Sa (2004) Hazelnut (Corylus avellana) vicilin Cor a 11: Molecular characterization of a glycoprotein and its allergenic activity. Biochemical Journal 383: 327–334.
[51]
Kolarich D, Altmann F (2000) N-Glycan Analysis by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of Electrophoretically Separated Nonmammalian Proteins: Application to Peanut Allergen Ara h 1 and Olive Pollen Allergen Ole e 1. Analytical Biochemistry 285: 64–75.
[52]
Malik A, Arif SAM, Ahmad S, Sunderasan E (2008) A molecular and in silico characterization of Hev b 4, a glycosylated latex allergen. International Journal of Biological Macromolecules 42: 185–190.
[53]
Commins S, Platts-Mills T (2010) Allergenicity of Carbohydrates and Their Role in Anaphylactic Events. Current Allergy and Asthma Reports 10: 29–33.
[54]
Sandrine J, Denise-Anne M-V, Bernard EB (2009) Mammalian meat–induced anaphylaxis: Clinical relevance of anti–galactose-α-1,3-galactose IgE confirmed by means of skin tests to cetuximab. The Journal of allergy and clinical immunology 124: 603–605.
[55]
Leonard RPB, Himly M, Kaar W, Wopfner N, Kolarich D, van Ree R, Ebner C, Duus J?, Ferreira F, Altmann F (2005) Two novel types of O-glycans on the mugwort pollen allergen Art v 1 and their role in antibody binding. J Biol Chem 280: 7932–7940.
[56]
Geijtenbeek TBH, Torensma R, van Vliet SJ, van Duijnhoven GCF, Adema GJ, et al. (2000) Identification of DC-SIGN, a Novel Dendritic Cell-Specific ICAM-3 Receptor that Supports Primary Immune Responses. Cell 100: 575–585.
[57]
Hsu SCCC, Tsai SH, Kawasaki H, Hung CH, Chu YT, Chang HW, Zhou Y, Fu J, Plunkett B, Su SN, Vieths S, Lee RT, Lee YC, Huang SK (2010) Functional interaction of common allergens and a C-type lectin receptor, dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN), on human dendritic cells. J Bio Chem 285: 7903–7910.
[58]
Mitsuhiro O, Kohsuke K, Teruaki T, Hisashi H, Teruhiro O, et al. (2001) Roles of carbohydrates on Cry j 1, the major allergen of Japanese cedar pollen, in specific T-cell responses. The Journal of allergy and clinical immunology 108: 101–108.
[59]
Rochman Y, Leonard WJ (2008) Thymic stromal lymphopoietin: a new cytokine in asthma. Current Opinion in Pharmacology 8: 249–254.
[60]
Ray RJ, Furlonger C, Williams DE, Paige CJ (1996) Characterization of thymic stromal-derived lymphopoietin (TSLP) in murine B cell development in vitro. European Journal of Immunology 26: 10–16.
[61]
Wang J, Xing F (2008) Human TSLP-Educated DCs. Cell Mol Immunol 5: 99–106.
[62]
Wang YH, Liu YJ (2009) Thymic stromal lymphopoietin, OX40-ligand, and interleukin-25 in allergic responses. Clinical & Experimental Allergy 39: 798–806.
[63]
Friend SLHS, Nelson A, Foxworthe D, Williams DE, Farr A (1994) A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp Hematol 22: 321–328.
[64]
Tanaka J, Watanabe N, Kido M, Saga K, Akamatsu T, et al. (2009) Human TSLP and TLR3 ligands promote differentiation of Th17 cells with a central memory phenotype under Th2-polarizing conditions. Clinical & Experimental Allergy 39: 89–100.
[65]
Miyata M, Nakamura Y, Shimokawa N, Ohnuma Y, Katoh R, et al. (2009) Thymic stromal lymphopoietin is a critical mediator of IL-13-driven allergic inflammation. European Journal of Immunology 39: 3078–3083.
[66]
Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, et al. (2009) House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med 15: 410–416.
[67]
Kashyap M, Rochman Y, Spolski R, Samsel L, Leonard WJ (2011) Thymic Stromal Lymphopoietin Is Produced by Dendritic Cells. The Journal of Immunology.
[68]
Emara M, Royer PJ, Abbas Z, Sewell HF, Mohamed GG, et al. (2011) Recognition of the major cat allergen Fel d 1 through the cysteine-rich domain of the mannose receptor determines its allergenicity. J Biol Chem 286: 13033–13040.
[69]
Emara M, Royer PJ, Mahdavi J, Shakib F, Ghaemmaghami AM (2011) Retagging identifies dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN) as a novel receptor for a major allergen from house dust mite. J Biol Chem The Journal of Biological Chemistry 287: 5756–5763.
[70]
Linhart B, Valenta R (2011) Mechanisms underlying allergy vaccination with recombinant hypoallergenic allergen derivatives. Vaccine. Available: http://dx.doi.org/10.1016/j.vaccine.2011?.11.011. www.sciencedirect.com website. Accessed 2012 March 1.
[71]
Jutel M, Akdis CA (2011) Immunological mechanisms of allergen-specific immunotherapy. Allergy 66: 725–732.