全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Disrupted-in-Schizophrenia (DISC1) Functions Presynaptically at Glutamatergic Synapses

DOI: 10.1371/journal.pone.0034053

Full-Text   Cite this paper   Add to My Lib

Abstract:

The pathophysiology of schizophrenia is believed to involve defects in synaptic transmission, and the function of many schizophrenia-associated genes, including DISC1, have been linked to synaptic function at glutamatergic synapses. Here we develop a rodent model via in utero electroporation to assay the presynaptic function of DISC1 at glutamatergic synapses. We used a combination of mosaic transgene expression, RNAi knockdown and optogenetics to restrict both genetic manipulation and synaptic stimulation of glutamatergic neurons presynaptic to other layer 2/3 neocortical pyramidal neurons that were then targeted for whole-cell patch-clamp recording. We show that expression of the DISC1 c-terminal truncation variant that is associated with Schizophrenia alters the frequency of mEPSCs and the kinetics of evoked glutamate release. In addition, we show that expression level of DISC1 is correlated with the probability of glutamate release such that increased DISC1 expression results in paired-pulse depression and RNAi knockdown of DISC1 produces paired-pulse facilitation. Overall, our results support a direct presynaptic function for the schizophrenia-associated gene, DISC1.

References

[1]  Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, et al. (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9: 1415–1423.
[2]  Blackwood DH, Fordyce A, Walker MT, St Clair DM, Porteous DJ, et al. (2001) Schizophrenia and affective disorders–cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. Am J Hum Genet 69: 428–433.
[3]  Brandon NJ, Sawa A (2011) Linking neurodevelopmental and synaptic theories of mental illness through DISC1. Nat Rev Neurosci 12: 707–722.
[4]  Soares DC, Carlyle BC, Bradshaw NJ, Porteous DJ (2011) DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness. ACS Chem Neurosci 2: 609–632.
[5]  Kamiya A, Kubo K, Tomoda T, Takaki M, Youn R, et al. (2005) A schizophrenia-associated mutation of DISC1 perturbs cerebral cortex development. Nat Cell Biol 7: 1167–1178.
[6]  Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, et al. (2007) Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130: 1146–1158.
[7]  Mao Y, Ge X, Frank CL, Madison JM, Koehler AN, et al. (2009) Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell 136: 1017–1031.
[8]  Hayashi-Takagi A, Takaki M, Graziane N, Seshadri S, Murdoch H, et al. (2010) Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1. Nat Neurosci 13: 327–332.
[9]  Niwa M, Kamiya A, Murai R, Kubo K, Gruber AJ, et al. (2010) Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron 65: 480–489.
[10]  Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, et al. (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci U S A 104: 14501–14506.
[11]  Ayhan Y, Abazyan B, Nomura J, Kim R, Ladenheim B, et al. (2011) Differential effects of prenatal and postnatal expressions of mutant human DISC1 on neurobehavioral phenotypes in transgenic mice: evidence for neurodevelopmental origin of major psychiatric disorders. Mol Psychiatry.
[12]  Kirkpatrick B, Xu L, Cascella N, Ozeki Y, Sawa A, et al. (2006) DISC1 immunoreactivity at the light and ultrastructural level in the human neocortex. J Comp Neurol 497: 436–450.
[13]  Wang Q, Charych EI, Pulito VL, Lee JB, Graziane NM, et al. (2011) The psychiatric disease risk factors DISC1 and TNIK interact to regulate synapse composition and function. Mol Psychiatry 16: 1006–1023.
[14]  Faulkner RL, Jang MH, Liu XB, Duan X, Sailor KA, et al. (2008) Development of hippocampal mossy fiber synaptic outputs by new neurons in the adult brain. Proc Natl Acad Sci U S A 105: 14157–14162.
[15]  Kvajo M, McKellar H, Drew LJ, Lepagnol-Bestel AM, Xiao L, et al. (2011) Altered axonal targeting and short-term plasticity in the hippocampus of Disc1 mutant mice. Proc Natl Acad Sci U S A 108: E1349–1358.
[16]  Flores R 3rd, Hirota Y, Armstrong B, Sawa A, Tomoda T (2011) DISC1 regulates synaptic vesicle transport via a lithium-sensitive pathway. Neurosci Res 71: 71–77.
[17]  Atkin TA, MacAskill AF, Brandon NJ, Kittler JT (2011) Disrupted in Schizophrenia-1 regulates intracellular trafficking of mitochondria in neurons. Mol Psychiatry 16: 122–124, 121.
[18]  Cai Q, Davis ML, Sheng ZH (2011) Regulation of axonal mitochondrial transport and its impact on synaptic transmission. Neurosci Res 70: 9–15.
[19]  Manent JB, Wang Y, Chang Y, Paramasivam M, LoTurco JJ (2009) Dcx reexpression reduces subcortical band heterotopia and seizure threshold in an animal model of neuronal migration disorder. Nat Med 15: 84–90.
[20]  Kubo K, Tomita K, Uto A, Kuroda K, Seshadri S, et al. (2010) Migration defects by DISC1 knockdown in C57BL/6, 129X1/SvJ, and ICR strains via in utero gene transfer and virus-mediated RNAi. Biochem Biophys Res Commun 400: 631–637.
[21]  Mizuno H, Hirano T, Tagawa Y (2007) Evidence for activity-dependent cortical wiring: formation of interhemispheric connections in neonatal mouse visual cortex requires projection neuron activity. J Neurosci 27: 6760–6770.
[22]  Li L, Tasic B, Micheva KD, Ivanov VM, Spletter ML, et al. (2010) Visualizing the distribution of synapses from individual neurons in the mouse brain. PLoS One 5: e11503.
[23]  Maher BJ, McGinley MJ, Westbrook GL (2009) Experience-dependent maturation of the glomerular microcircuit. Proc Natl Acad Sci U S A 106: 16865–16870.
[24]  Pang ZP, Sudhof TC (2010) Cell biology of Ca2+-triggered exocytosis. Curr Opin Cell Biol 22: 496–505.
[25]  Nakata K, Lipska BK, Hyde TM, Ye T, Newburn EN, et al. (2009) DISC1 splice variants are upregulated in schizophrenia and associated with risk polymorphisms. Proc Natl Acad Sci U S A 106: 15873–15878.
[26]  Maximov A, Sudhof TC (2005) Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron 48: 547–554.
[27]  Pang ZP, Sun J, Rizo J, Maximov A, Sudhof TC (2006) Genetic analysis of synaptotagmin 2 in spontaneous and Ca2+-triggered neurotransmitter release. EMBO J 25: 2039–2050.
[28]  Sun J, Pang ZP, Qin D, Fahim AT, Adachi R, et al. (2007) A dual-Ca2+-sensor model for neurotransmitter release in a central synapse. Nature 450: 676–682.
[29]  Kang JS, Tian JH, Pan PY, Zald P, Li C, et al. (2008) Docking of axonal mitochondria by syntaphilin controls their mobility and affects short-term facilitation. Cell 132: 137–148.
[30]  Ma H, Cai Q, Lu W, Sheng ZH, Mochida S (2009) KIF5B motor adaptor syntabulin maintains synaptic transmission in sympathetic neurons. J Neurosci 29: 13019–13029.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133