全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

RNA Sensors Enable Human Mast Cell Anti-Viral Chemokine Production and IFN-Mediated Protection in Response to Antibody-Enhanced Dengue Virus Infection

DOI: 10.1371/journal.pone.0034055

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dengue hemorrhagic fever and/or dengue shock syndrome represent the most serious pathophysiological manifestations of human dengue virus infection. Despite intensive research, the mechanisms and important cellular players that contribute to dengue disease are unclear. Mast cells are tissue-resident innate immune cells that play a sentinel cell role in host protection against infectious agents via pathogen-recognition receptors by producing potent mediators that modulate inflammation, cell recruitment and normal vascular homeostasis. Most importantly, mast cells are susceptible to antibody-enhanced dengue virus infection and respond with selective cytokine and chemokine responses. In order to obtain a global view of dengue virus-induced gene regulation in mast cells, primary human cord blood-derived mast cells (CBMCs) and the KU812 and HMC-1 mast cell lines were infected with dengue virus in the presence of dengue-immune sera and their responses were evaluated at the mRNA and protein levels. Mast cells responded to antibody-enhanced dengue virus infection or polyinosini?polycytidylic acid treatment with the production of type I interferons and the rapid and potent production of chemokines including CCL4, CCL5 and CXCL10. Multiple interferon-stimulated genes were also upregulated as well as mRNA and protein for the RNA sensors PKR, RIG-I and MDA5. Dengue virus-induced chemokine production by KU812 cells was significantly modulated by siRNA knockdown of RIG-I and PKR, in a negative and positive manner, respectively. Pretreatment of fresh KU812 cells with supernatants from dengue virus-infected mast cells provided protection from subsequent infection with dengue virus in a type I interferon-dependent manner. These findings support a role for tissue-resident mast cells in the early detection of antibody-enhanced dengue virus infection via RNA sensors, the protection of neighbouring cells through interferon production and the potential recruitment of leukocytes via chemokine production.

References

[1]  Marshall JS, Jawdat DM (2004) Mast cells in innate immunity. J Allergy Clin Immunol 114: 21–27.
[2]  Marshall JS, King CA, McCurdy JD (2003) Mast cell cytokine and chemokine responses to bacterial and viral infection. Curr Pharm Des 9: 11–24.
[3]  Marshall JS (2004) Mast-cell responses to pathogens. Nat Rev Immunol 4: 787–799.
[4]  Metz M, Siebenhaar F, Maurer M (2008) Mast cell functions in the innate skin immune system. Immunobiology 213: 251–260.
[5]  Metz M, Maurer M (2007) Mast cells–key effector cells in immune responses. Trends Immunol 28: 234–241.
[6]  Dawicki W, Marshall JS (2007) New and emerging roles for mast cells in host defence. Curr Opin Immunol 19: 31–38.
[7]  Galli SJ, Maurer M, Lantz CS (1999) Mast cells as sentinels of innate immunity. Curr Opin Immunol 11: 53–59.
[8]  Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6: 135–142.
[9]  Brown MG, Hermann LL, Issekutz AC, Marshall JS, Rowter D, et al. (2011) Dengue virus infection of mast cells triggers endothelial cell activation. J Virol 85: 1145–1150.
[10]  King CA, Anderson R, Marshall JS (2002) Dengue virus selectively induces human mast cell chemokine production. J Virol 76: 8408–8419.
[11]  King CA, Marshall JS, Alshurafa H, Anderson R (2000) Release of vasoactive cytokines by antibody-enhanced dengue virus infection of a human mast cell/basophil line. J Virol 74: 7146–7150.
[12]  Orinska Z, Bulanova E, Budagian V, Metz M, Maurer M, et al. (2005) TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood 106: 978–987.
[13]  Kulka M, Alexopoulou L, Flavell RA, Metcalfe DD (2004) Activation of mast cells by double-stranded RNA: evidence for activation through Toll-like receptor 3. J Allergy Clin Immunol 114: 174–182.
[14]  Bozza FA, Cruz OG, Zagne SM, Azeredo EL, Nogueira RM, et al. (2008) Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis 8: 86.
[15]  Perez AB, Garcia G, Sierra B, Alvarez M, Vazquez S, et al. (2004) IL-10 levels in Dengue patients: some findings from the exceptional epidemiological conditions in Cuba. J Med Virol 73: 230–234.
[16]  Kulka M, Metcalfe DD (2006) TLR3 activation inhibits human mast cell attachment to fibronectin and vitronectin. Mol Immunol 43: 1579–1586.
[17]  Bonini S, Micera A, Iovieno A, Lambiase A, Bonini S (2005) Expression of Toll-like receptors in healthy and allergic conjunctiva. Ophthalmology 112: 1528. discussion 1548–1529.
[18]  McCurdy JD, Olynych TJ, Maher LH, Marshall JS (2003) Cutting edge: distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J Immunol 170: 1625–1629.
[19]  Matsushima H, Yamada N, Matsue H, Shimada S (2004) TLR3-, TLR7-, and TLR9-mediated production of proinflammatory cytokines and chemokines from murine connective tissue type skin-derived mast cells but not from bone marrow-derived mast cells. J Immunol 173: 531–541.
[20]  Varadaradjalou S, Feger F, Thieblemont N, Hamouda NB, Pleau JM, et al. (2003) Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur J Immunol 33: 899–906.
[21]  Burke SM, Issekutz TB, Mohan K, Lee PW, Shmulevitz M, et al. (2008) Human mast cell activation with virus associated stimuli leads to the selective chemotaxis of natural killer cells by a CXCL8 dependent mechanism. Blood 111: 5467–5476.
[22]  St John AL, Rathore AP, Yap H, Ng ML, Metcalfe DD, et al. (2011) Immune surveillance by mast cells during dengue infection promotes natural killer (NK) and NKT-cell recruitment and viral clearance. Proc Natl Acad Sci U S A 108: 9190–9195.
[23]  Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, et al. (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82: 335–345.
[24]  Chang TH, Liao CL, Lin YL (2006) Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. Microbes Infect 8: 157–171.
[25]  Qin CF, Zhao H, Liu ZY, Jiang T, Deng YQ, et al. (2011) Retinoic acid inducible gene-I and melanoma differentiation-associated gene 5 are induced but not essential for dengue virus induced type I interferon response. Mol Biol Rep 38: 3867–3873.
[26]  Wagoner J, Austin M, Green J, Imaizumi T, Casola A, et al. (2007) Regulation of CXCL-8 (interleukin-8) induction by double-stranded RNA signaling pathways during hepatitis C virus infection. J Virol 81: 309–318.
[27]  Yoshida H, Imaizumi T, Lee SJ, Tanji K, Sakaki H, et al. (2007) Retinoic acid-inducible gene-I mediates RANTES/CCL5 expression in U373MG human astrocytoma cells stimulated with double-stranded RNA. Neurosci Res 58: 199–206.
[28]  Diamond MS, Harris E (2001) Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PKR-independent mechanism. Virology 289: 297–311.
[29]  Kishi K (1985) A new leukemia cell line with Philadelphia chromosome characterized as basophil precursors. Leuk Res 9: 381–390.
[30]  Butterfield JH, Weiler D, Dewald G, Gleich GJ (1988) Establishment of an immature mast cell line from a patient with mast cell leukemia. Leuk Res 12: 345–355.
[31]  Lin TJ, Issekutz TB, Marshall JS (2000) Human mast cells transmigrate through human umbilical vein endothelial monolayers and selectively produce IL-8 in response to stromal cell-derived factor-1 alpha. J Immunol 165: 211–220.
[32]  Halstead SB, Simasthien P (1970) Observations related to the pathogenesis of dengue hemorrhagic fever. II. Antigenic and biologic properties of dengue viruses and their association with disease response in the host. Yale J Biol Med 42: 276–292.
[33]  He RT, Innis BL, Nisalak A, Usawattanakul W, Wang S, et al. (1995) Antibodies that block virus attachment to Vero cells are a major component of the human neutralizing antibody response against dengue virus type 2. J Med Virol 45: 451–461.
[34]  Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.
[35]  Henchal EA, McCown JM, Burke DS, Seguin MC, Brandt WE (1985) Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. Am J Trop Med Hyg 34: 162–169.
[36]  Farrell PJ, Balkow K, Hunt T, Jackson RJ, Trachsel H (1977) Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis. Cell 11: 187–200.
[37]  Chen JP, Lu HL, Lai SL, Campanella GS, Sung JM, et al. (2006) Dengue virus induces expression of CXC chemokine ligand 10/IFN-gamma-inducible protein 10, which competitively inhibits viral binding to cell surface heparan sulfate. J Immunol 177: 3185–3192.
[38]  Hsieh MF, Lai SL, Chen JP, Sung JM, Lin YL, et al. (2006) Both CXCR3 and CXCL10/IFN-inducible protein 10 are required for resistance to primary infection by dengue virus. J Immunol 177: 1855–1863.
[39]  Kadowaki N, Antonenko S, Liu YJ (2001) Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CD11c- type 2 dendritic cell precursors and CD11c+ dendritic cells to produce type I IFN. J Immunol 166: 2291–2295.
[40]  Lundberg AM, Drexler SK, Monaco C, Williams LM, Sacre SM, et al. (2007) Key differences in TLR3/poly I:C signaling and cytokine induction by human primary cells: a phenomenon absent from murine cell systems. Blood 110: 3245–3252.
[41]  Siren J, Imaizumi T, Sarkar D, Pietila T, Noah DL, et al. (2006) Retinoic acid inducible gene-I and mda-5 are involved in influenza A virus-induced expression of antiviral cytokines. Microbes Infect 8: 2013–2020.
[42]  Boo KH, Yang JS (2010) Intrinsic cellular defenses against virus infection by antiviral type I interferon. Yonsei Med J 51: 9–17.
[43]  Kadereit S, Galabru J, Robert N, Meurs EF, Hovanessian AG (1994) Characterization of an interferon-induced 48-kD protein immunologically related to the double-stranded RNA-activated protein kinase PKR. J Interferon Res 14: 251–257.
[44]  Kang DC, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM, et al. (2002) mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A 99: 637–642.
[45]  Yount JS, Moran TM, Lopez CB (2007) Cytokine-independent upregulation of MDA5 in viral infection. J Virol 81: 7316–7319.
[46]  Munoz-Jordan JL, Fredericksen BL (2010) How flaviviruses activate and suppress the interferon response. Viruses 2: 676–691.
[47]  Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, et al. (2011) RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis 5: e926.
[48]  Raghupathy R, Chaturvedi UC, Al-Sayer H, Elbishbishi EA, Agarwal R, et al. (1998) Elevated levels of IL-8 in dengue hemorrhagic fever. J Med Virol 56: 280–285.
[49]  Dejnirattisai W, Duangchinda T, Lin CL, Vasanawathana S, Jones M, et al. (2008) A complex interplay among virus, dendritic cells, T cells, and cytokines in dengue virus infections. J Immunol 181: 5865–5874.
[50]  Biffl WL, Moore EE, Moore FA, Carl VS, Franciose RJ, et al. (1995) Interleukin-8 increases endothelial permeability independent of neutrophils. J Trauma 39: 98–102. discussion 102–103.
[51]  Tsai YT, Chang SY, Lee CN, Kao CL (2009) Human TLR3 recognizes dengue virus and modulates viral replication in vitro. Cell Microbiol 11: 604–615.
[52]  Takeuchi O, Akira S (2009) Innate immunity to virus infection. Immunol Rev 227: 75–86.
[53]  Kawai T, Akira S (2008) Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci 1143: 1–20.
[54]  Medin CL, Fitzgerald KA, Rothman AL (2005) Dengue virus nonstructural protein NS5 induces interleukin-8 transcription and secretion. J Virol 79: 11053–11061.
[55]  Nightingale ZD, Patkar C, Rothman AL (2008) Viral replication and paracrine effects result in distinct, functional responses of dendritic cells following infection with dengue 2 virus. J Leukoc Biol 84: 1028–1038.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133