全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Near-Infrared Fluorescence Imaging of Mammalian Cells and Xenograft Tumors with SNAP-Tag

DOI: 10.1371/journal.pone.0034003

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fluorescence in the near-infrared (NIR) spectral region is suitable for in vivo imaging due to its reduced background and high penetration capability compared to visible fluorescence. SNAPf is a fast-labeling variant of SNAP-tag that reacts with a fluorescent dye-conjugated benzylguanine (BG) substrate, leading to covalent attachment of the fluorescent dye to the SNAPf. This property makes SNAPf a valuable tool for fluorescence imaging. The NIR fluorescent substrate BG-800, a conjugate between BG and IRDye 800CW, was synthesized and characterized in this study. HEK293, MDA-MB-231 and SK-OV-3 cells stably expressing SNAPf-Beta-2 adrenergic receptor (SNAPf-ADRβ2) fusion protein were created. The ADRβ2 portion of the protein directs the localization of the protein to the cell membrane. The expression of SNAPf-ADRβ2 in the stable cell lines was confirmed by the reaction between BG-800 substrate and cell lysates. Microscopic examination confirmed that SNAPf-ADRβ2 was localized on the cell membrane. The signal intensity of the labeled cells was dependent on the BG-800 concentration. In vivo imaging study showed that BG-800 could be used to visualize xenograph tumors expressing SNAPf-ADRβ2. However, the background signal was relatively high, which may be a reflection of non-specific accumulation of BG-800 in the skin. To address the background issue, quenched substrates that only fluoresce upon reaction with SNAP-tag were synthesized and characterized. Although the fluorescence was successfully quenched, in vivo imaging with the quenched substrate CBG-800-PEG-QC1 failed to visualize the SNAPf-ADRβ2 expressing tumor, possibly due to the reduced reaction rate. Further improvement is needed to apply this system for in vivo imaging.

References

[1]  Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312: 217–224.
[2]  Kovar JL, Simpson MA, Schutz-Geschwender A, Olive DM (2007) A systematic approach to the development of fluorescent contrast agents for optical imaging of mouse cancer models. Anal Biochem 367: 1–12.
[3]  Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17: 545–580.
[4]  Weissleder R (2001) A clearer vision for in vivo imaging. Nat Biotechnol 19: 316–317.
[5]  Lin MZ, McKeown MR, Ng HL, Aguilera TA, Shaner NC, et al. (2009) Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem Biol 16: 1169–1179.
[6]  Shcherbo D, Merzlyak EM, Chepurnykh TV, Fradkov AF, Ermakova GV, et al. (2007) Bright far-red fluorescent protein for whole-body imaging. Nat Methods 4: 741–746.
[7]  Shcherbo D, Shemiakina II, Ryabova AV, Luker KE, Schmidt BT, et al. (2010) Near-infrared fluorescent proteins. Nat Methods 7: 827–829.
[8]  Shu X, Royant A, Lin MZ, Aguilera TA, Lev-Ram V, et al. (2009) Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324: 804–807.
[9]  Filonov GS, Piatkevich KD, Ting LM, Zhang J, Kim K, et al. (2011) Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat Biotechnol 29: 757–761.
[10]  Sun X, Zhang A, Baker B, Sun L, Howard A, et al. (2011) Development of SNAP-Tag Fluorogenic Probes for Wash-Free Fluorescence Imaging. Chembiochem 12: 2217–2226.
[11]  Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A 101: 9955–9959.
[12]  Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, et al. (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21: 86–89.
[13]  Chen H, Kovar J, Sissons S, Cox K, Matter W, et al. (2005) A cell-based immunocytochemical assay for monitoring kinase signaling pathways and drug efficacy. Anal Biochem 338: 136–142.
[14]  Kovar JL, Volcheck W, Sevick-Muraca E, Simpson MA, Olive DM (2009) Characterization and performance of a near-infrared 2-deoxyglucose optical imaging agent for mouse cancer models. Anal Biochem 384: 254–262.
[15]  Gong H, Kovar J, Little G, Chen H, Olive DM (2010) In vivo imaging of xenograft tumors using an epidermal growth factor receptor-specific affibody molecule labeled with a near-infrared fluorophore. Neoplasia 12: 139–149.
[16]  Marshall MV, Draney D, Sevick-Muraca EM, Olive DM (2010) Single-Dose Intravenous Toxicity Study of IRDye 800CW in Sprague-Dawley Rats. Mol Imaging Biol.
[17]  Gong H, Singh SV, Singh SP, Mu Y, Lee JH, et al. (2006) Orphan nuclear receptor pregnane X receptor sensitizes oxidative stress responses in transgenic mice and cancerous cells. Mol Endocrinol 20: 279–290.
[18]  Gong H, Little G, Cradduck M, Draney DR, Padhye N, et al. (2011) Alkaline phosphatase assay using a near-infrared fluorescent substrate merocyanine 700 phosphate. Talanta 84: 941–946.
[19]  Gong H, Jarzynka MJ, Cole TJ, Lee JH, Wada T, et al. (2008) Glucocorticoids antagonize estrogens by glucocorticoid receptor-mediated activation of estrogen sulfotransferase. Cancer Res 68: 7386–7393.
[20]  Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, et al. (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5: 561–567.
[21]  Srikun D, Albers AE, Nam CI, Iavarone AT, Chang CJ (2010) Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling. J Am Chem Soc 132: 4455–4465.
[22]  Tomat E, Nolan EM, Jaworski J, Lippard SJ (2008) Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells. J Am Chem Soc 130: 15776–15777.
[23]  Eckhardt M, Anders M, Muranyi W, Heilemann M, Krijnse-Locker J, et al. (2011) A SNAP-tagged derivative of HIV-1–a versatile tool to study virus-cell interactions. PLoS One 6: e22007.
[24]  Jones SA, Shim SH, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8: 499–508.
[25]  Kampmeier F, Niesen J, Koers A, Ribbert M, Brecht A, et al. (2010) Rapid optical imaging of EGF receptor expression with a single-chain antibody SNAP-tag fusion protein. Eur J Nucl Med Mol Imaging 37: 1926–1934.
[26]  Bojkowska K, Santoni de Sio F, Barde I, Offner S, Verp S, et al. (2011) Measuring in vivo protein half-life. Chem Biol 18: 805–815.
[27]  Sampath L, Kwon S, Ke S, Wang W, Schiff R, et al. (2007) Dual-labeled trastuzumab-based imaging agent for the detection of human epidermal growth factor receptor 2 overexpression in breast cancer. J Nucl Med 48: 1501–1510.
[28]  Adams KE, Ke S, Kwon S, Liang F, Fan Z, et al. (2007) Comparison of visible and near-infrared wavelength-excitable fluorescent dyes for molecular imaging of cancer. J Biomed Opt 12: 024017.
[29]  Kosaka N, Ogawa M, Choyke PL, Karassina N, Corona C, et al. (2009) In vivo stable tumor-specific painting in various colors using dehalogenase-based protein-tag fluorescent ligands. Bioconjug Chem 20: 1367–1374.
[30]  Komatsu T, Johnsson K, Okuno H, Bito H, Inoue T, et al. (2011) Real-time measurements of protein dynamics using fluorescence activation-coupled protein labeling method. J Am Chem Soc 133: 6745–6751.
[31]  Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110: 2620–2640.
[32]  Kobayashi H, Choyke PL (2011) Target-cancer-cell-specific activatable fluorescence imaging probes: rational design and in vivo applications. Acc Chem Res 44: 83–90.
[33]  Stohr K, Siegberg D, Ehrhard T, Lymperopoulos K, Oz S, et al. (2010) Quenched substrates for live-cell labeling of SNAP-tagged fusion proteins with improved fluorescent background. Anal Chem 82: 8186–8193.
[34]  Zhang CJ, Li L, Chen GY, Xu QH, Yao SQ (2011) One- and two-photon live cell imaging using a mutant SNAP-Tag protein and its FRET substrate pairs. Org Lett 13: 4160–4163.
[35]  Peng X, Chen H, Draney DR, Volcheck W, Schutz-Geschwender A, et al. (2009) A nonfluorescent, broad-range quencher dye for Forster resonance energy transfer assays. Anal Biochem 388: 220–228.
[36]  Kiyose K, Hanaoka K, Oushiki D, Nakamura T, Kajimura M, et al. (2010) Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia. J Am Chem Soc 132: 15846–15848.
[37]  Barrett T, Koyama Y, Hama Y, Ravizzini G, Shin IS, et al. (2007) In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin Cancer Res 13: 6639–6648.
[38]  Koyama Y, Barrett T, Hama Y, Ravizzini G, Choyke PL, et al. (2007) In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies. Neoplasia 9: 1021–1029.
[39]  Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, et al. (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15: 128–136.
[40]  Gong H, Zhang B, Little G, Kovar J, Chen H, et al. (2009) beta-Galactosidase activity assay using far-red-shifted fluorescent substrate DDAOG. Anal Biochem 386: 59–64.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133