In Leishmania, de novo polyamine synthesis is initiated by the cleavage of L-arginine to urea and L-ornithine by the action of arginase (ARG, E.C. 3.5.3.1). Previous studies in L. major and L. mexicana showed that ARG is essential for in vitro growth in the absence of polyamines and needed for full infectivity in animal infections. The ARG protein is normally found within the parasite glycosome, and here we examined whether this localization is required for survival and infectivity. First, the localization of L. amazonensis ARG in the glycosome was confirmed in both the promastigote and amastigote stages. As in other species, arg? L. amazonensis required putrescine for growth and presented an attenuated infectivity. Restoration of a wild type ARG to the arg? mutant restored ARG expression, growth and infectivity. In contrast, restoration of a cytosol-targeted ARG lacking the glycosomal SKL targeting sequence (argΔSKL) restored growth but failed to restore infectivity. Further study showed that the ARGΔSKL protein was found in the cytosol as expected, but at very low levels. Our results indicate that the proper compartmentalization of L. amazonensis arginase in the glycosome is important for enzyme activity and optimal infectivity. Our conjecture is that parasite arginase participates in a complex equilibrium that defines the fate of L-arginine and that its proper subcellular location may be essential for this physiological orchestration.
References
[1]
Bogdan C, Rollinghoff M (1999) How do protozoan parasites survive inside macrophages? Parasitol Today 15(1): 22–8.
[2]
Cunningham AC (2002) Parasitic adaptive mechanisms in infection by leishmania. Exp Mol Pathol 72(2): 132–141.
[3]
Munder M, Choi BS, Rogers M, Kropf P (2009) L-arginine deprivation impairs Leishmania major-specific T-cell responses. Eur J Immunol 39(8): 2161–72.
[4]
Wanasen N, Macleod CL, Ellies LG, Soong L (2007) L-arginine and cationic amino acid transporter 2B regulate growth and survival of Leishmania amazonensis amastigotes in macrophages. Infect Immun 75(6): 2802–10.
[5]
Darlyuk I, Goldman A, Roberts SC, Ullman B, Rentsch D, et al. (2009) Arginine homeostasis and transport in the human pathogen Leishmania donovani. J Biol Chem 284(30): 19800–7.
[6]
Corraliza IM, Soler G, et al. (1995) Arginase induction by suppressors of nitric oxide synthesis (IL-4, IL-10 and PGE2) in murine bone-marrow-derived macrophages. Biochem Biophys Res Commun 206(2): 667–673.
[7]
Munder M, Eichmann K, Moran JM, Centeno F, Soler G, et al. (1999) Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol 163(7): 3771–7.
[8]
Wanasen N, Soong L (2008) L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol Res 41(1): 15–25.
[9]
Boucher JL, Moali C, Tenu JP (1999) Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for L-arginine utilization. Cell Mol Life Sci 55(8–9): 1015–28.
[10]
Da Silva ER, Castilho TM, Pioker FC, Tomich De Paula Silva CH, Floeter-Winter LM (2002) Genomic organisation and transcription characterisation of the gene encoding Leishmania (Leishmania) amazonensis arginase and its protein structure prediction. Int J Parasitol 32(6): 727–37.
[11]
Roberts SC, Tancer MJ, Polinsky MR, Gibson KM, Heby O, et al. (2004) Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. Characterization of gene deletion mutants. J Biol Chem 279(22): 23668–78.
[12]
Reguera RM, Balana-Fouce R, Showalter M, Hickerson S, Beverley SM (2009) Leishmania major lacking arginase (ARG) are auxotrophic for polyamines but retain infectivity to susceptible BALB/c mice. Mol Biochem Parasitol 165(1): 48–56.
[13]
Gaur U, Roberts SC, Dalvi RP, Corraliza I, Ullman B, et al. (2007) An effect of parasite-encoded arginase on the outcome of murine cutaneous leishmaniasis. J Immunol 179(12): 8446–53.
[14]
Muleme HM, Reguera RM, Berard A, Azinwi R, Jia P, et al. (2009) Infection with arginase-deficient Leishmania major reveals a parasite number-dependent and cytokine-independent regulation of host cellular arginase activity and disease pathogenesis. J Immunol 183(12): 8068–76.
[15]
Da Silva ER, Da Silva MF, Fischer H, Mortara RA, Mayer MG, et al. (2008) Biochemical and biophysical properties of a highly active recombinant arginase from Leishmania (Leishmania) amazonensis and subcellular localization of native enzyme. Mol Biochem Parasitol 159(2): 104–11.
[16]
Opperdoes FR (1987) Compartmentation of carbohydrate metabolism in trypanosomes. Annu Rev Microbiol 41: 127–51.
[17]
Opperdoes FR, Szikora JP (2006) In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes. Mol Biochem Parasitol 147(2): 193–206.
[18]
Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, et al. (2009) Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324(5924): 265–8.
[19]
Cruz A, Beverley SM (1990) Gene replacement in parasitic protozoa. Nature 348(6297): 171–3.
[20]
Archer S, Queiroz R, Stewart M, Clayton C (2008) Trypanosomes as a Model to Investigate mRNA Decay Pathways. In: Maquat LE, Kiledjian M, editors. Methods in Enzymology. Elsevier. pp. 359–377.
[21]
Sitia R, Braakman I (2003) Quality control in the endoplasmic reticulum protein factory. Nature 426(6968): 891–4.
[22]
Kubota H (2009) Quality control against misfolded proteins in the cytosol: a network for cell survival. J Biochem 146(5): 609–16.
[23]
Su W, Liu Y, Xia Y, Hong Z, Li J (2011) Conserved endoplasmic reticulum-associated degradation system to eliminate mutated receptor-like kinases in Arabidopsis. Proc Natl Acad Sci U S A 108(2): 870–5.
[24]
Field MC, Sergeenko T, Wang YN, Bohm S, Carrington M (2010) Chaperone requirements for biosynthesis of the trypanosome variant surface glycoprotein. PLoS One 5(1): e8468.
[25]
Munder M, Eichmann K, Modolell M (1998) Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160(11): 5347–54.
[26]
Mieulet V, Yan L, Choisy C, Sully K, Procter J, et al. (2010) TPL-2-mediated activation of MAPK downstream of TLR4 signaling is coupled to arginine availability. Sci Signal 3(135): ra61.
[27]
Genestra M, Guedes-Silva D, Souza WJ, Cysne-Finkelstein L, Soares-Bezerra RJ, et al. (2006) Nitric oxide synthase (NOS) characterization in Leishmania amazonensis axenic amastigotes. Arch Med Res 37(3): 328–33.
[28]
Kropf P, Fuentes JM, Fahnrich E, Arpa L, Herath S, et al. (2005) Arginase and polyamine synthesis are key factors in the regulation of experimental leishmaniasis in vivo. Faseb J 19(8): 1000–2.
[29]
Castilho-Martins EA, Laranjeira Da Silva MF, Dos Santos MG, Muxel SM, Floeter-Winter LM (2011) Axenic Leishmania amazonensis Promastigotes Sense both the External and Internal Arginine Pool Distinctly Regulating the Two Transporter-Coding Genes. PLoS One 6(11): e27818.
[30]
Blattner J, Helfert S, Michels P, Clayton C (1998) Compartmentation of phosphoglycerate kinase in Trypanosoma brucei plays a critical role in parasite energy metabolism. Proc Natl Acad Sci U S A 95(20): 11596–600.
[31]
Guerra-Giraldez C, Quijada L, Clayton CE (2002) Compartmentation of enzymes in a microbody, the glycosome, is essential in Trypanosoma brucei. J Cell Sci 115(Pt 13): 2651–8.
[32]
Michels PA, Bringaud F, Herman M, Hannaert V (2006) Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta 1763(12): 1463–77.
[33]
Lambeir AM, Loiseau AM, Kuntz DA, Vellieux FM, Michels PA, et al. (1991) The cytosolic and glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei. Kinetic properties and comparison with homologous enzymes. Eur J Biochem 198(2): 429–35.
[34]
Michels PA, Marchand M, Kohl L, Allert S, Wierenga RK, et al. (1991) The cytosolic and glycosomal isoenzymes of glyceraldehyde-3-phosphate dehydrogenase in Trypanosoma brucei have a distant evolutionary relationship. Eur J Biochem 198(2): 421–8.
[35]
Haanstra JR, Van Tuijl A, Kessler P, Reijnders W, Michels PA, et al. (2008) Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes. Proc Natl Acad Sci U S A 105(46): 17718–23.
[36]
Al-Ani GK, Patel N, Pirani KA, Zhu T, Dhalladoo S, et al. (2011) The N-Terminal Domain and Glycosomal Localization of Leishmania Initial Acyltransferase LmDAT Are Important for Lipophosphoglycan Synthesis. PLoS One 6(11): e27802.
[37]
Iniesta V, Gomez-Nieto LC, Corraliza I (2001) The inhibition of arginase by N(omega)-hydroxy-l-arginine controls the growth of Leishmania inside macrophages. J Exp Med 193(6): 777–84.
[38]
Riley E, Roberts SC, Ullman B (2011) Inhibition profile of Leishmania mexicana arginase reveals differences with human arginase I. Int J Parasitol 41(5): 545–52.
[39]
Robinson KA, Beverley SM (2003) Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol Biochem Parasitol 128(2): 217–28.
[40]
Madeira Da Silva L, Owens KL, Murta SM, Beverley SM (2009) Regulated expression of the Leishmania major surface virulence factor lipophosphoglycan using conditionally destabilized fusion proteins. Proc Natl Acad Sci U S A 106(18): 7583–8.
[41]
Godoy PD, Nogueira-Junior LA, Paes LS, Cornejo A, Martins RM, et al. (2009) Trypanosome prereplication machinery contains a single functional orc1/cdc6 protein, which is typical of archaea. Eukaryot Cell 8(10): 1592–603.