全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Chronic Infection Drives Expression of the Inhibitory Receptor CD200R, and Its Ligand CD200, by Mouse and Human CD4 T Cells

DOI: 10.1371/journal.pone.0035466

Full-Text   Cite this paper   Add to My Lib

Abstract:

Certain parasites have evolved to evade the immune response and establish chronic infections that may persist for many years. T cell responses in these conditions become muted despite ongoing infection. Upregulation of surface receptors with inhibitory properties provides an immune cell-intrinsic mechanism that, under conditions of chronic infection, regulates immune responses and limits cellular activation and associated pathology. The negative regulator, CD200 receptor, and its ligand, CD200, have been shown to regulate macrophage activation and reduce pathology following infection. We show that CD4 T cells also increase expression of inhibitory CD200 receptors (CD200R) in response to chronic infection. CD200R was upregulated on murine effector T cells in response to infection with bacterial, Salmonella enterica, or helminth, Schistosoma mansoni, pathogens that respectively drive predominant Th1- or Th2-responses. In vitro chronic and prolonged stimuli were required for the sustained upregulation of CD200R, and its expression coincided with loss of multifunctional potential in T effector cells during infection. Importantly, we show an association between IL-4 production and CD200R expression on T effector cells from humans infected with Schistosoma haematobium that correlated effectively with egg burden and, thus infection intensity. Our results indicate a role of CD200R:CD200 in T cell responses to helminths which has diagnostic and prognostic relevance as a marker of infection for chronic schistosomiasis in mouse and man.

References

[1]  Hotez PJ, Brindley PJ, Bethony JM, King CH, Pearce EJ, et al. (2008) Helminth infections: the great neglected tropical diseases. J Clin Invest 118: 1311–1321.
[2]  Mathers CD, Ezzati M, Lopez AD (2007) Measuring the burden of neglected tropical diseases: the global burden of disease framework. PLoS Negl Trop Dis 1: e114.
[3]  Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, et al. (1997) Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci U S A 94: 338–342.
[4]  Crompton DW, Nesheim MC (2002) Nutritional impact of intestinal helminthiasis during the human life cycle. Annu Rev Nutr 22: 35–59.
[5]  Pearce EJ, MacDonald AS (2002) The immunobiology of schistosomiasis. Nat Rev Immunol 2: 499–511.
[6]  Taylor JJ, Krawczyk CM, Mohrs M, Pearce EJ (2009) Th2 cell hyporesponsiveness during chronic murine schistosomiasis is cell intrinsic and linked to GRAIL expression. J Clin Invest 119: 1019–1028.
[7]  Fife BT, Bluestone JA (2008) Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 224: 166–182.
[8]  Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11: 141–151.
[9]  Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, et al. (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3: 541–547.
[10]  Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, et al. (2005) Establishment of NOD-Pdcd1-/- mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci U S A 102: 11823–11828.
[11]  Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, et al. (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270: 985–988.
[12]  Barclay AN, Wright GJ, Brooke G, Brown MH (2002) CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol 23: 285–290.
[13]  Mihrshahi R, Barclay AN, Brown MH (2009) Essential roles for Dok2 and RasGAP in CD200 receptor-mediated regulation of human myeloid cells. J Immunol 183: 4879–4886.
[14]  Rijkers ES, de Ruiter T, Baridi A, Veninga H, Hoek RM, et al. (2008) The inhibitory CD200R is differentially expressed on human and mouse T and B lymphocytes. Mol Immunol 45: 1126–1135.
[15]  Wright GJ, Cherwinski H, Foster-Cuevas M, Brooke G, Puklavec MJ, et al. (2003) Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J Immunol 171: 3034–3046.
[16]  Webb M, Barclay AN (1984) Localisation of the MRC OX-2 glycoprotein on the surfaces of neurones. J Neurochem 43: 1061–1067.
[17]  Wright GJ, Jones M, Puklavec MJ, Brown MH, Barclay AN (2001) The unusual distribution of the neuronal/lymphoid cell surface CD200 (OX2) glycoprotein is conserved in humans. Immunology 102: 173–179.
[18]  Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, et al. (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290: 1768–1771.
[19]  Snelgrove RJ, Goulding J, Didierlaurent AM, Lyonga D, Vekaria S, et al. (2008) A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat Immunol 9: 1074–1083.
[20]  Rygiel TP, Rijkers ES, de Ruiter T, Stolte EH, van der Valk M, et al. (2009) Lack of CD200 enhances pathological T cell responses during influenza infection. J Immunol 183: 1990–1996.
[21]  Kawasaki BT, Farrar WL (2008) Cancer stem cells, CD200 and immunoevasion. Trends Immunol 29: 464–468.
[22]  Kretz-Rommel A, Qin F, Dakappagari N, Ravey EP, McWhirter J, et al. (2007) CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J Immunol 178: 5595–5605.
[23]  Kretz-Rommel A, Qin F, Dakappagari N, Cofiell R, Faas SJ, et al. (2008) Blockade of CD200 in the presence or absence of antibody effector function: implications for anti-CD200 therapy. J Immunol 180: 699–705.
[24]  Vella A, Teague TK, Ihle J, Kappler J, Marrack P (1997) Interleukin 4 (IL-4) or IL-7 prevents the death of resting T cells: stat6 is probably not required for the effect of IL-4. J Exp Med 186: 325–330.
[25]  Caserta S, Alessi P, Guarnerio J, Basso V, Mondino A (2008) Synthetic CD4+ T cell-targeted antigen-presenting cells elicit protective antitumor responses. Cancer Res 68: 3010–3018.
[26]  Harari A, Dutoit V, Cellerai C, Bart PA, Du Pasquier RA, et al. (2006) Functional signatures of protective antiviral T-cell immunity in human virus infections. Immunol Rev 211: 236–254.
[27]  Han S, Asoyan A, Rabenstein H, Nakano N, Obst R (2010) Role of antigen persistence and dose for CD4+ T-cell exhaustion and recovery. Proc Natl Acad Sci U S A 107: 20453–20458.
[28]  Murphy E, Shibuya K, Hosken N, Openshaw P, Maino V, et al. (1996) Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J Exp Med 183: 901–913.
[29]  Mohrs M, Shinkai K, Mohrs K, Locksley RM (2001) Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15: 303–311.
[30]  Phythian-Adams AT, Cook PC, Lundie RJ, Jones LH, Smith KA, et al. (2010) CD11c depletion severely disrupts Th2 induction and development in vivo. J Exp Med 207: 2089–2096.
[31]  Sprent J, Surh CD (2002) T cell memory. Annu Rev Immunol 20: 551–579.
[32]  Hess J, Ladel C, Miko D, Kaufmann SH (1996) Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J Immunol 156: 3321–3326.
[33]  Mihrshahi R, Brown MH (2010) Downstream of tyrosine kinase 1 and 2 play opposing roles in CD200 receptor signaling. J Immunol 185: 7216–7222.
[34]  Mutapi F, Winborn G, Midzi N, Taylor M, Mduluza T, et al. (2007) Cytokine responses to Schistosoma haematobium in a Zimbabwean population: contrasting profiles for IFN-gamma, IL-4, IL-5 and IL-10 with age. BMC infectious diseases 7: 139.
[35]  Milner T, Reilly L, Nausch N, Midzi N, Mduluza T, et al. (2010) Circulating cytokine levels and antibody responses to human Schistosoma haematobium: IL-5 and IL-10 levels depend upon age and infection status. Parasite immunology 32: 710–721.
[36]  Murphy KM, Heimberger AB, Loh DY (1990) Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250: 1720–1723.
[37]  Lucas B, Vasseur F, Penit C (1993) Normal sequence of phenotypic transitions in one cohort of 5-bromo-2'-deoxyuridine-pulse-labeled thymocytes. Correlation with T cell receptor expression. J Immunol 151: 4574–4582.
[38]  Caserta S, Kleczkowska J, Mondino A, Zamoyska R (2010) Reduced functional avidity promotes central and effector memory CD4 T cell responses to tumor-associated antigens. J Immunol 185: 6545–6554.
[39]  Hoiseth SK, Stocker BA (1981) Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291: 238–239.
[40]  Barr TA, Brown S, Mastroeni P, Gray D (2010) TLR and B cell receptor signals to B cells differentially program primary and memory Th1 responses to Salmonella enterica. J Immunol 185: 2783–2789.
[41]  Mutapi F, Roddam A (2002) p values for pathogens: statistical inference from infectious-disease data. Lancet Infect Dis 2: 219–230.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133