全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

High-Level Expression of Notch1 Increased the Risk of Metastasis in T1 Stage Clear Cell Renal Cell Carcinoma

DOI: 10.1371/journal.pone.0035022

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Although metastasis of clear cell renal cell carcinoma (ccRCC) is basically observed in late stage tumors, T1 stage metastasis of ccRCC can also be found with no definite molecular cause resulting inappropriate selection of surgery method and poor prognosis. Notch signaling is a conserved, widely expressed signal pathway that mediates various cellular processes in normal development and tumorigenesis. This study aims to explore the potential role and mechanism of Notch signaling in the metastasis of T1 stage ccRCC. Methodology/Principal Findings The expression of Notch1 and Jagged1 were analyzed in tumor tissues and matched normal adjacent tissues obtained from 51 ccRCC patients. Compared to non-tumor tissues, Notch1 and Jagged1 expression was significantly elevated both in mRNA and protein levels in tumors. Tissue samples of localized and metastatic tumors were divided into three groups based on their tumor stages and the relative mRNA expression of Notch1 and Jagged1 were analyzed. Compared to localized tumors, Notch1 expression was significantly elevated in metastatic tumors in T1 stage while Jagged1 expression was not statistically different between localized and metastatic tumors of all stages. The average size of metastatic tumors was significantly larger than localized tumors in T1 stage ccRCC and the elevated expression of Notch1 was significantly positive correlated with the tumor diameter. The functional significance of Notch signaling was studied by transfection of 786-O, Caki-1 and HKC cell lines with full-length expression plasmids of Notch1 and Jagged1. Compared to the corresponding controls, all cell lines demonstrated significant promotion in cell proliferation and migration while cell cycle remained unaffected. Conclusions/Significance High-level expression of Notch signaling increased the risk of metastasis in T1 stage ccRCC by stimulating the proliferation and migration of tumor cells, which may be helpful for the selection of suitable operation method and prognosis of ccRCC.

References

[1]  Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90.
[2]  Ljungberg B, Cowan NC, Hanbury DC, Hora M, Kuczyk MA, et al. (2010) EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 58: 398–406.
[3]  Campbell SC, Novick AC, Belldegrun A, Blute ML, Chow GK, et al. (2009) Guideline for management of the clinical T1 renal mass. J Urol 182: 1271–1279.
[4]  Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284: 770–776.
[5]  Leong KG, Karsan A (2006) Recent insights into the role of Notch signaling in tumorigenesis. Blood 107: 2223–2233.
[6]  Sjolund J, Johansson M, Manna S, Norin C, Pietras A, et al. (2008) Suppression of renal cell carcinoma growth by inhibition of Notch signaling in vitro and in vivo. J Clin Invest 118: 217–228.
[7]  Sun S, Du R, Gao J, Ning X, Xie H, et al. (2009) Expression and clinical significance of Notch receptors in human renal cell carcinoma. Pathology 41: 335–341.
[8]  Racusen LC, Monteil C, Sgrignoli A, Lucskay M, Marouillat S, et al. (1997) Cell lines with extended in vitro growth potential from human renal proximal tubule: characterization, response to inducers, and comparison with established cell lines. J Lab Clin Med 129: 318–329.
[9]  Williams RD, Elliott AY, Stein N, Fraley EE (1976) In vitro cultivation of human renal cell cancer. I. Establishment of cells in culture. In Vitro 12: 623–627.
[10]  Fogh J, Wright WC, Loveless JD (1977) Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst 58: 209–214.
[11]  Jung M, Ramankulov A, Roigas J, Johannsen M, Ringsdorf M, et al. (2007) In search of suitable reference genes for gene expression studies of human renal cell carcinoma by real-time PCR. BMC Mol Biol 8: 47.
[12]  Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.
[13]  Hu Z, Ai Q, Xu H, Ma X, Li HZ, et al. (2011) Fibulin-5 is down-regulated in urothelial carcinoma of bladder and inhibits growth and invasion of human bladder cancer cell line 5637. Urol Oncol 29: 430–435.
[14]  Lau WK, Cheville JC, Blute ML, Weaver AL, Zincke H (2002) Prognostic features of pathologic stage T1 renal cell carcinoma after radical nephrectomy. Urology 59: 532–537.
[15]  Miller J, Fischer C, Freese R, Altmannsberger M, Weidner W (1999) Nephron-sparing surgery for renal cell carcinoma–is tumor size a suitable parameter for indication? Urology 54: 988–993.
[16]  Remzi M, Ozsoy M, Klingler HC, Susani M, Waldert M, et al. (2006) Are small renal tumors harmless? Analysis of histopathological features according to tumors 4 cm or less in diameter. J Urol 176: 896–899.
[17]  Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 161–174.
[18]  Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3: 453–458.
[19]  Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2: 563–572.
[20]  Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8: 341–352.
[21]  Zhang TH, Liu HC, Zhu LJ, Chu M, Liang YJ, et al. (2011) Activation of Notch signaling in human tongue carcinoma. J Oral Pathol Med 40: 37–45.
[22]  Sonoshita M, Aoki M, Fuwa H, Aoki K, Hosogi H, et al. (2011) Suppression of colon cancer metastasis by Aes through inhibition of Notch signaling. Cancer Cell 19: 125–137.
[23]  Wang M, Wang J, Wang L, Wu L, Xin X (2010) Notch1 expression correlates with tumor differentiation status in ovarian carcinoma. Med Oncol 27: 1329–1335.
[24]  Chu D, Li Y, Wang W, Zhao Q, Li J, et al. (2010) High level of Notch1 protein is associated with poor overall survival in colorectal cancer. Ann Surg Oncol 17: 1337–1342.
[25]  Yeh TS, Wu CW, Hsu KW, Liao WJ, Yang MC, et al. (2009) The activated Notch1 signal pathway is associated with gastric cancer progression through cyclooxygenase-2. Cancer Res 69: 5039–5048.
[26]  Wu K, Xu L, Zhang L, Lin Z, Hou J (2010) High Jagged1 Expression Predicts Poor Outcome in Clear Cell Renal Cell Carcinoma. Jpn J Clin Oncol.
[27]  Cheville JC, Blute ML, Zincke H, Lohse CM, Weaver AL (2001) Stage pT1 conventional (clear cell) renal cell carcinmoa: pathological features associated with cancer specific survival. J Urol 166: 453–456.
[28]  Lughezzani G, Jeldres C, Isbarn H, Perrotte P, Shariat SF, et al. (2009) Tumor size is a determinant of the rate of stage T1 renal cell cancer synchronous metastasis. J Urol 182: 1287–1293.
[29]  D'Souza B, Miyamoto A, Weinmaster G (2008) The many facets of Notch ligands. Oncogene 27: 5148–5167.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133