Background Cardiopulmonary bypass (CPB) surgery initiates a controlled systemic inflammatory response characterized by a cytokine storm, monocytosis and transient monocyte activation. However, the responsiveness of monocytes to Toll-like receptor (TLR)-mediated activation decreases throughout the postoperative course. The purpose of this study was to identify the major signaling pathway involved in plasma-mediated inhibition of LPS-induced tumor necrosis factor (TNF)-α production by monocytes. Methodology/Principal Findings Pediatric patients that underwent CPB-assisted surgical correction of simple congenital heart defects were enrolled (n = 38). Peripheral blood mononuclear cells (PBMC) and plasma samples were isolated at consecutive time points. Patient plasma samples were added back to monocytes obtained pre-operatively for ex vivo LPS stimulations and TNF-α and IL-6 production was measured by flow cytometry. LPS-induced p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB activation by patient plasma was assessed by Western blotting. A cell-permeable peptide inhibitor was used to block STAT3 signaling. We found that plasma samples obtained 4 h after surgery, regardless of pre-operative dexamethasone treatment, potently inhibited LPS-induced TNF-α but not IL-6 synthesis by monocytes. This was not associated with attenuation of p38 MAPK activation or IκB-α degradation. However, abrogation of the IL-10/STAT3 pathway restored LPS-induced TNF-α production in the presence of suppressive patient plasma. Conclusions/Significance Our findings suggest that STAT3 signaling plays a crucial role in the downregulation of TNF-α synthesis by human monocytes in the course of systemic inflammation in vivo. Thus, STAT3 might be a potential molecular target for pharmacological intervention in clinical syndromes characterized by systemic inflammation.
References
[1]
Tomic V, Russwurm S, Moller E, Claus RA, Blaess M, et al. (2005) Transcriptomic and proteomic patterns of systemic inflammation in on-pump and off-pump coronary artery bypass grafting. Circulation 112(19): 2912–2920.
[2]
Diegeler A, Doll N, Rauch T, Haberer D, Walther T, et al. (2000) Humoral immune response during coronary artery bypass grafting: A comparison of limited approach, “off-pump” technique, and conventional cardiopulmonary bypass. Circulation 102(19 Suppl 3): III95–100.
[3]
Chew MS, Brandslund I, Brix-Christensen V, Ravn HB, Hjortdal VE, et al. (2001) Tissue injury and the inflammatory response to pediatric cardiac surgery with cardiopulmonary bypass: A descriptive study. Anesthesiology 94(5): 745–53.
[4]
Xing L, Remick DG (2003) Relative cytokine and cytokine inhibitor production by mononuclear cells and neutrophils. Shock 20(1): 10–16.
[5]
Allen ML, Peters MJ, Goldman A, Elliott M, James I, et al. (2002) Early postoperative monocyte deactivation predicts systemic inflammation and prolonged stay in pediatric cardiac intensive care. Crit Care Med 30(5): 1140–1145.
[6]
Peters M, Petros A, Dixon G, Inwald D, Klein N (1999) Acquired immunoparalysis in paediatric intensive care: Prospective observational study. BMJ 319(7210): 609–610.
[7]
Pachot A, Cazalis MA, Venet F, Turrel F, Faudot C, et al. (2008) Decreased expression of the fractalkine receptor CX3CR1 on circulating monocytes as new feature of sepsis-induced immunosuppression. J Immunol 180(9): 6421–6429.
[8]
Evans BJ, Haskard DO, Finch JR, Hambleton IR, Landis RC, et al. (2008) The inflammatory effect of cardiopulmonary bypass on leukocyte extravasation in vivo. J Thorac Cardiovasc Surg 135(5): 999–1006.
[9]
Seghaye M, Duchateau J, Bruniaux J, Demontoux S, Bosson C, et al. (1996) Interleukin-10 release related to cardiopulmonary bypass in infants undergoing cardiac operations. J Thorac Cardiovasc Surg 111(3): 545–553.
[10]
Sablotzki A, Welters I, Lehmann N, Menges T, Gorlach G, et al. (1997) Plasma levels of immunoinhibitory cytokines interleukin-10 and transforming growth factor-beta in patients undergoing coronary artery bypass grafting. Eur J Cardiothorac Surg 11(4): 763–768.
[11]
Tarnok A, Schneider P (2001) Pediatric cardiac surgery with cardiopulmonary bypass: Pathways contributing to transient systemic immune suppression. Shock 16: Suppl 124–32.
[12]
Franke A, Lante W, Fackeldey V, Becker HP, Thode C, et al. (2002) Proinflammatory and antiinflammatory cytokines after cardiac operation: Different cellular sources at different times. Ann Thorac Surg 74(2): 363–70.
[13]
Wilhelm W, Grundmann U, Rensing H, Werth M, Langemeyer J, et al. (2002) Monocyte deactivation in severe human sepsis or following cardiopulmonary bypass. Shock 17(5): 354–360.
[14]
Dehoux MS, Hernot S, Asehnoune K, Boutten A, Paquin S, et al. (2000) Cardiopulmonary bypass decreases cytokine production in lipopolysaccharide-stimulated whole blood cells: Roles of interleukin-10 and the extracorporeal circuit. Crit Care Med 28(6): 1721–1727.
[15]
Borgermann J, Friedrich I, Flohe S, Spillner J, Majetschak M, et al. (2002) Tumor necrosis factor-alpha production in whole blood after cardiopulmonary bypass: Downregulation caused by circulating cytokine-inhibitory activities. J Thorac Cardiovasc Surg 124(3): 608–617.
[16]
Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249(4975): 1431–1433.
[17]
Haziot A, Tsuberi BZ, Goyert SM (1993) Neutrophil CD14: Biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. J Immunol 150(12): 5556–5565.
[18]
Lequier LL, Nikaidoh H, Leonard SR, Bokovoy JL, White ML, et al. (2000) Preoperative and postoperative endotoxemia in children with congenital heart disease. Chest 117(6): 1706–1712.
[19]
Kitchens RL, Thompson PA, O'Keefe GE, Munford RS (2000) Plasma constituents regulate LPS binding to, and release from, the monocyte cell surface. J Endotoxin Res 6(6): 477–482.
[20]
Dybdahl B, Wahba A, Lien E, Flo TH, Waage A, et al. (2002) Inflammatory response after open heart surgery: Release of heat-shock protein 70 and signaling through toll-like receptor-4. Circulation 105(6): 685–690.
[21]
Hadley JS, Wang JE, Michaels LC, Dempsey CM, Foster SJ, et al. (2007) Alterations in inflammatory capacity and TLR expression on monocytes and neutrophils after cardiopulmonary bypass. Shock 27(5): 466–473.
[22]
Shames BD, Selzman CH, Meldrum DR, Pulido EJ, Barton HA, et al. (1998) Interleukin-10 stabilizes inhibitory kappaB-alpha in human monocytes. Shock 10(6): 389–394.
[23]
Takezako N, Hayakawa M, Hayakawa H, Aoki S, Yanagisawa K, et al. (2006) ST2 suppresses IL-6 production via the inhibition of IkappaB degradation induced by the LPS signal in THP-1 cells. Biochem Biophys Res Commun 341(2): 425–432.
[24]
Schadenberg AWL, Vastert SJ, Evens FCM, Kuis W, van Vught AJ, et al. (2011) FOXP3+CD4+ Tregs lose suppressive potential but remain anergic during transient inflammation in human. Eur J Immunol 41: 1132–42.
[25]
Pierrakos C, Vincent JL (2010) Sepsis biomarkers: A review. Crit Care 14(1): R15.
[26]
Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13(2): 85–94.
[27]
Piao W, Song C, Chen H, Diaz MA, Wahl LM, et al. (2009) Endotoxin tolerance dysregulates MyD88- and Toll/IL-1R domain-containing adapter inducing IFN-beta-dependent pathways and increases expression of negative regulators of TLR signaling. J Leukoc Biol 86(4): 863–875.
[28]
Bazzoni F, Tamassia N, Rossato M, Cassatella MA (2010) Understanding the molecular mechanisms of the multifaceted IL-10-mediated anti-inflammatory response: Lessons from neutrophils. Eur J Immunol 40(9): 2360–2368.
[29]
Pils MC, Pisano F, Fasnacht N, Heinrich JM, Groebe L, et al. (2010) Monocytes/macrophages and/or neutrophils are the target of IL-10 in the LPS endotoxemia model. Eur J Immunol 40(2): 443–448.
[30]
Williams LM, Sarma U, Willets K, Smallie T, Brennan F, et al. (2007) Expression of constitutively active STAT3 can replicate the cytokine-suppressive activity of interleukin-10 in human primary macrophages. J Biol Chem 282(10): 6965–6975.
[31]
Williams L, Bradley L, Smith A, Foxwell B (2004) Signal transducer and activator of transcription 3 is the dominant mediator of the anti-inflammatory effects of IL-10 in human macrophages. J Immunol 172(1): 567–576.
[32]
Berlato C, Cassatella MA, Kinjyo I, Gatto L, Yoshimura A, et al. (2002) Involvement of suppressor of cytokine signaling-3 as a mediator of the inhibitory effects of IL-10 on lipopolysaccharide-induced macrophage activation. J Immunol 168(12): 6404–6411.
[33]
Lee TS, Chau LY (2002) Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 8(3): 240–246.
[34]
Turkson J, Ryan D, Kim JS, Zhang Y, Chen Z, et al. (2001) Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J Biol Chem 276(48): 45443–45455.
[35]
Sarvikivi E, Lyytikainen O, Nieminen H, Sairanen H, Saxen H (2008) Nosocomial infections after pediatric cardiac surgery. Am J Infect Control 36(8): 564–569.
[36]
Michalopoulos A, Geroulanos S, Rosmarakis ES, Falagas ME (2006) Frequency, characteristics, and predictors of microbiologically documented nosocomial infections after cardiac surgery. Eur J Cardiothorac Surg 29(4): 456–460.
[37]
Allen ML, Hoschtitzky JA, Peters MJ, Elliott M, Goldman A, et al. (2006) Interleukin-10 and its role in clinical immunoparalysis following pediatric cardiac surgery. Crit Care Med 34(10): 2658–2665.
[38]
van 't Veer C, van den Pangaart PS, van Zoelen MA, de Kruif M, Birjmohun RS, et al. (2007) Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model. J Immunol 179(10): 7110–7120.
[39]
Adib-Conquy M, Adrie C, Fitting C, Gattolliat O, Beyaert R, et al. (2006) Up-regulation of MyD88s and SIGIRR, molecules inhibiting toll-like receptor signaling, in monocytes from septic patients. Crit Care Med 34(9): 2377–2385.
[40]
Matsukawa A, Takeda K, Kudo S, Maeda T, Kagayama M, et al. (2003) Aberrant inflammation and lethality to septic peritonitis in mice lacking STAT3 in macrophages and neutrophils. J Immunol 171(11): 6198–6205.
[41]
Takeda K, Clausen BE, Kaisho T, Tsujimura T, Terada N, et al. (1999) Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10(1): 39–49.
[42]
Tamassia N, Calzetti F, Menestrina N, Rossato M, Bazzoni F, et al. (2008) Circulating neutrophils of septic patients constitutively express IL-10R1 and are promptly responsive to IL-10. Int Immunol 20(4): 535–541.
[43]
Oiva J, Mustonen H, Kylanpaa ML, Kyhala L, Alanara T, et al. (2010) Patients with acute pancreatitis complicated by organ failure show highly aberrant monocyte signaling profiles assessed by phospho-specific flow cytometry. Crit Care Med 38(8): 1702–1708.
[44]
Riley JK, Takeda K, Akira S, Schreiber RD (1999) Interleukin-10 receptor signaling through the JAK-STAT pathway. requirement for two distinct receptor-derived signals for anti-inflammatory action. J Biol Chem 274(23): 16513–16521.
[45]
Ogata M, Okamoto K, Kohriyama K, Kawasaki T, Itoh H, et al. (2000) Role of interleukin-10 on hyporesponsiveness of endotoxin during surgery. Crit Care Med 28(9): 3166–3170.
[46]
Niemand C, Nimmesgern A, Haan S, Fischer P, Schaper F, et al. (2003) Activation of STAT3 by IL-6 and IL-10 in primary human macrophages is differentially modulated by suppressor of cytokine signaling 3. J Immunol 170(6): 3263–3272.
[47]
Yasukawa H, Ohishi M, Mori H, Murakami M, Chinen T, et al. (2003) IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages. Nat Immunol 4(6): 551–556.
[48]
Murray PJ (2005) The primary mechanism of the IL-10-regulated antiinflammatory response is to selectively inhibit transcription. Proc Natl Acad Sci U S A 102(24): 8686–8691.
[49]
Murray PJ (2007) The JAK-STAT signaling pathway: Input and output integration. J Immunol 178(5): 2623–2629.
[50]
Bolli R, Stein AB, Guo Y, Wang OL, Rokosh G, et al. (2011) A murine model of inducible, cardiac-specific deletion of STAT3: Its use to determine the role of STAT3 in the upregulation of cardioprotective proteins by ischemic preconditioning. J Mol Cell Cardiol 50(4): 589–597.
[51]
Heusch G, Musiolik J, Gedik N, Skyschally A (2011) Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res 109(11): 1302–1308.
[52]
Boengler K, Hilfiker-Kleiner D, Drexler H, Heusch G, Schulz R (2008) The myocardial JAK/STAT pathway: From protection to failure. Pharmacol Ther 120(2): 172–185.
[53]
Checchia PA, Bronicki RA, Costello JM, Nelson DP (2005) Steroid use before pediatric cardiac operations using cardiopulmonary bypass: An international survey of 36 centers. Pediatr Crit Care Med 6(4): 441–444.
[54]
Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, et al. (2002) Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg 123(1): 110–118.
[55]
de Jong H, Lafeber FF, de Jager W, Haverkamp MH, Kuis W, et al. (2009) Pan-DR-binding Hsp60 self epitopes induce an interleukin-10-mediated immune response in rheumatoid arthritis. Arthritis Rheum 60(7): 1966–1976.
[56]
de Jager W, Prakken BJ, Bijlsma JW, Kuis W, Rijkers GT (2005) Improved multiplex immunoassay performance in human plasma and synovial fluid following removal of interfering heterophilic antibodies. J Immunol Methods 300(1–2): 124–135.