Dystrophin contributes to force transmission and has a protein-scaffolding role for a variety of signaling complexes in skeletal muscle. In the present study, we tested the hypothesis that the muscle adaptive response following mechanical overloading (ML) would be decreased in MDX dystrophic muscle lacking dystrophin. We found that the gains in muscle maximal force production and fatigue resistance in response to ML were both reduced in MDX mice as compared to healthy mice. MDX muscle also exhibited decreased cellular and molecular muscle remodeling (hypertrophy and promotion of slower/oxidative fiber type) in response to ML, and altered intracellular signalings involved in muscle growth and maintenance (mTOR, myostatin, follistatin, AMPKα1, REDD1, atrogin-1, Bnip3). Moreover, dystrophin rescue via exon skipping restored the adaptive response to ML. Therefore our results demonstrate that the adaptive response in response to ML is impaired in dystrophic MDX muscle, most likely because of the dystrophin crucial role.
References
[1]
Miyazaki M, Esser KA (2009) Cellular mechanisms regulating protein synthesis and skeletal muscle hypertrophy in animals. J Appl Physiol 106: 1367–1373.
[2]
Spangenburg EE (2009) Changes in muscle mass with mechanical load: possible cellular mechanisms. Appl Physiol Nutr Metab 34: 328–335.
[3]
Schiaffino S, Sandri M, Murgia M (2007) Activity-dependent signaling pathways controlling muscle diversity and plasticity. Physiology (Bethesda) 22: 269–278.
[4]
Fluck M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity–from gene to form and function. Rev Physiol Biochem Pharmacol 146: 159–216.
[5]
Gundersen K (2010) Excitation-transcription coupling in skeletal muscle: the molecular pathways of exercise. Biol Rev Camb Philos Soc 86: 564–600.
[6]
Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, et al. (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014–1019.
[7]
Goodman CA, Frey JW, Mabrey DM, Jacobs BL, Lincoln HC, et al. (2011) The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth. J Physiol 589: 5485–5501.
[8]
Lai KM, Gonzalez M, Poueymirou WT, Kline WO, Na E, et al. (2004) Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24: 9295–9304.
[9]
Blaauw B, Canato M, Agatea L, Toniolo L, Mammucari C, et al. (2009) Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. Faseb J 23: 3896–3905.
[10]
Mounier R, Lantier L, Leclerc J, Sotiropoulos A, Pende M, et al. (2009) Important role for AMPKalpha1 in limiting skeletal muscle cell hypertrophy. Faseb J 23: 2264–2273.
[11]
Xu Z, Ichikawa N, Kosaki K, Yamada Y, Sasaki T, et al. (2010) Perlecan deficiency causes muscle hypertrophy, a decrease in myostatin expression, and changes in muscle fiber composition. Matrix Biol 29: 461–470.
[12]
Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, et al. (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296: C1258–1270.
[13]
Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, et al. (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296: C1248–1257.
[14]
Amirouche A, Durieux AC, Banzet S, Koulmann N, Bonnefoy R, et al. (2009) Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150: 286–294.
[15]
Sun Y, Ge Y, Drnevich J, Zhao Y, Band M, et al. (2010) Mammalian target of rapamycin regulates miRNA-1 and follistatin in skeletal myogenesis. J Cell Biol 189: 1157–1169.
[16]
Miyazaki M, Esser KA (2009) REDD2 is enriched in skeletal muscle and inhibits mTOR signaling in response to leucine and stretch. Am J Physiol Cell Physiol 296: C583–592.
[17]
Miyazaki M, McCarthy JJ, Fedele MJ, Esser KA (2011) Early activation of mTORC1 signalling in response to mechanical overload is independent of phosphoinositide 3-kinase/Akt signalling. J Physiol 589: 1831–1846.
[18]
Dupont E, Cieniewski-Bernard C, Bastide B, Stevens L (2011) Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK. Am J Physiol Regul Integr Comp Physiol 300: R408–417.
[19]
McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, et al. (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138: 3657–3666.
[20]
Burke RE, Levine DN, Tsairis P, Zajac FE (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234: 723–748.
[21]
Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75: 19–37.
[22]
Dunn SE, Burns JL, Michel RN (1999) Calcineurin is required for skeletal muscle hypertrophy. J Biol Chem 274: 21908–21912.
[23]
Dunn SE, Chin ER, Michel RN (2000) Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fiber growth. J Cell Biol 151: 663–672.
[24]
Parsons SA, Millay DP, Wilkins BJ, Bueno OF, Tsika GL, et al. (2004) Genetic loss of calcineurin blocks mechanical overload-induced skeletal muscle fiber type switching but not hypertrophy. J Biol Chem 279: 26192–26200.
[25]
Lira VA, Benton CR, Yan Z, Bonen A (2010) PGC-1alpha regulation by exercise training and its influences on muscle function and insulin sensitivity. Am J Physiol Endocrinol Metab 299: E145–161.
[26]
Ramaswamy KS, Palmer ML, van der Meulen JH, Renoux A, Kostrominova TY, et al. (2011) Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J Physiol.
[27]
Lynch GS, Hinkle RT, Chamberlain JS, Brooks SV, Faulkner JA (2001) Force and power output of fast and slow skeletal muscles from mdx mice 6–28 months old. J Physiol 535: 591–600.
[28]
Dumonceaux J, Marie S, Beley C, Trollet C, Vignaud A, et al. (2010) Combination of myostatin pathway interference and dystrophin rescue enhances tetanic and specific force in dystrophic mdx mice. Mol Ther 18: 881–887.
[29]
Friedrich O, von Wegner F, Chamberlain JS, Fink RH, Rohrbach P (2008) L-type Ca2+ channel function is linked to dystrophin expression in mammalian muscle. PLoS One 3: e1762.
[30]
Allen DG, Zhang BT, Whitehead NP (2010) Stretch-Induced Membrane Damage in Muscle: Comparison of Wild-Type and mdx Mice. Adv Exp Med Biol 682: 297–313.
[31]
Rolland JF, De Luca A, Burdi R, Andreetta F, Confalonieri P, et al. (2006) Overactivity of exercise-sensitive cation channels and their impaired modulation by IGF-1 in mdx native muscle fibers: beneficial effect of pentoxifylline. Neurobiol Dis 24: 466–474.
[32]
Sellman JE, DeRuisseau KC, Betters JL, Lira VA, Soltow QA, et al. (2006) In vivo inhibition of nitric oxide synthase impairs upregulation of contractile protein mRNA in overloaded plantaris muscle. J Appl Physiol 100: 258–265.
[33]
Pietri-Rouxel F, Gentil C, Vassilopoulos S, Baas D, Mouisel E, et al. (2010) DHPR alpha1S subunit controls skeletal muscle mass and morphogenesis. Embo J 29: 643–654.
[34]
Kumar A, Khandelwal N, Malya R, Reid MB, Boriek AM (2004) Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. Faseb J 18: 102–113.
[35]
Barton ER (2006) Impact of sarcoglycan complex on mechanical signal transduction in murine skeletal muscle. Am J Physiol Cell Physiol 290: C411–419.
[36]
Stupka N, Michell BJ, Kemp BE, Lynch GS (2006) Differential calcineurin signalling activity and regeneration efficacy in diaphragm and limb muscles of dystrophic mdx mice. Neuromuscul Disord 16: 337–346.
[37]
Nakamura A, Yoshida K, Ueda H, Takeda S, Ikeda S (2005) Up-regulation of mitogen activated protein kinases in mdx skeletal muscle following chronic treadmill exercise. Biochim Biophys Acta 1740: 326–331.
[38]
Lang JM, Esser KA, Dupont-Versteegden EE (2004) Altered activity of signaling pathways in diaphragm and tibialis anterior muscle of dystrophic mice. Exp Biol Med (Maywood) 229: 503–511.
[39]
Baldwin KM, Valdez V, Herrick RE, MacIntosh AM, Roy RR (1982) Biochemical properties of overloaded fast-twitch skeletal muscle. J Appl Physiol 52: 467–472.
[40]
Ianuzzo CD, Gollnick PD, Armstrong RB (1976) Compensatory adaptations of skeletal muscle fiber types to a long-term functional overload. Life Sci 19: 1517–1523.
[41]
McGee SL, Mustard KJ, Hardie DG, Baar K (2008) Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase alpha1 following overload in LKB1 knockout mice. J Physiol 586: 1731–1741.
[42]
Roy RR, Edgerton VR (1995) Response of mouse plantaris muscle to functional overload: comparison with rat and cat. Comp Biochem Physiol A Physiol 111: 569–575.
[43]
Spangenburg EE, Le Roith D, Ward CW, Bodine SC (2008) A functional insulin-like growth factor receptor is not necessary for load-induced skeletal muscle hypertrophy. J Physiol 586: 283–291.
[44]
Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC, et al. (2004) Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 306: 1796–1799.
[45]
Riviere C, Danos O, Douar AM (2006) Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Ther 13: 1300–1308.
[46]
Gonin P, Arandel L, Van Wittenberghe L, Marais T, Perez N, et al. (2005) Femoral intra-arterial injection: a tool to deliver and assess recombinant AAV constructs in rodents whole hind limb. J Gene Med 7: 782–791.
[47]
Mouisel E, Vignaud A, Hourde C, Butler-Browne G, Ferry A (2010) Muscle weakness and atrophy are associated with decreased regenerative capacity and changes in mTOR signaling in skeletal muscles of venerable (18–24-month-old) dystrophic mdx mice. Muscle Nerve 41: 809–818.
[48]
Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, et al. (2009) Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 187: 859–874.
[49]
Frontera WR, Larsson L (1997) Contractile studies of single human skeletal muscle fibers: a comparison of different muscles, permeabilization procedures, and storage techniques. Muscle Nerve 20: 948–952.
[50]
Trollet C, Anvar SY, Venema A, Hargreaves IP, Foster K, et al. (2010) Molecular and phenotypic characterization of a mouse model of oculopharyngeal muscular dystrophy reveals severe muscular atrophy restricted to fast glycolytic fibres. Hum Mol Genet 19: 2191–2207.
[51]
Agbulut O, Vignaud A, Hourde C, Mouisel E, Fougerousse F, et al. (2009) Slow myosin heavy chain expression in the absence of muscle activity. Am J Physiol Cell Physiol 296: C205–214.
[52]
Sakamoto K, Goransson O, Hardie DG, Alessi DR (2004) Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR. Am J Physiol Endocrinol Metab 287: E310–317.
[53]
Hourde C, Jagerschmidt C, Clement-Lacroix P, Vignaud A, Ammann P, et al. (2009) Androgen replacement therapy improves function in male rat muscles independently of hypertrophy and activation of the Akt/mTOR pathway. Acta Physiol (Oxf) 195: 471–482.
[54]
Marino JS, Tausch BJ, Dearth CL, Manacci MV, McLoughlin TJ, et al. (2008) Beta2-integrins contribute to skeletal muscle hypertrophy in mice. Am J Physiol Cell Physiol 295: C1026–1036.
[55]
Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23: 160–170.
[56]
Borst SE (2004) Interventions for sarcopenia and muscle weakness in older people. Age Ageing 33: 548–555.
[57]
Friedrich O, Both M, Weber C, Schurmann S, Teichmann MD, et al. (2010) Microarchitecture is severely compromised but motor protein function is preserved in dystrophic mdx skeletal muscle. Biophys J 98: 606–616.
[58]
Koo T, Malerba A, Athanasopoulos T, Trollet C, Boldrin L, et al. (2011) Delivery of AAV2/9-Microdystrophin Genes Incorporating Helix 1 of the Coiled-Coil Motif in the C-Terminal Domain of Dystrophin Improves Muscle Pathology and Restores the Level of alpha1-Syntrophin and alpha-Dystrobrevin in Skeletal Muscles of mdx Mice. Hum Gene Ther 22: 1379–1388.
[59]
Hamilton DL, Philp A, MacKenzie MG, Baar K (2010) A limited role for PI(3,4,5)P3 regulation in controlling skeletal muscle mass in response to resistance exercise. PLoS One 5: e11624.
[60]
Shavlakadze T, Chai J, Maley K, Cozens G, Grounds G, et al. (2010) A growth stimulus is needed for IGF-1 to induce skeletal muscle hypertrophy in vivo. J Cell Sci 123: 960–971.
[61]
Hornberger TA (2011) Mechanotransduction and the regulation of mTORC1 signaling in skeletal muscle. Int J Biochem Cell Biol 43: 1267–1276.
[62]
Spangenburg EE, McBride TA (2006) Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation. J Appl Physiol 100: 129–135.
[63]
Acharyya S, Butchbach ME, Sahenk Z, Wang H, Saji M, et al. (2005) Dystrophin glycoprotein complex dysfunction: a regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell 8: 421–432.
[64]
Judge LM, Arnett AL, Banks GB, Chamberlain JS (2011) Expression of the dystrophin isoform Dp116 preserves functional muscle mass and extends lifespan without preventing dystrophy in severely dystrophic mice. Hum Mol Genet 20: 4978–4990.