[1] | Meysman FJR, Middelburg JJ, Heip CHR (2006) Bioturbation: a fresh look at Darwin's last idea. Trends Ecol Evol 21: 688–695.
|
[2] | Aller RC (1978) Experimental studies of changes produced by deposit feeders on pore water, sediment and overlying water chemistry. Am J Sci 278: 1185–1234.
|
[3] | Rhoads DC, Boyer LF (1982) Effects of marine benthos on physical properties of sediments: a successional perspective. In: McCall PL, Tevesz MJS, editors. Animal-Sediment Relations. pp. 3–51. Plenum Press, New York.
|
[4] | Lohrer AM, Thrush SF, Gibbs MM (2004) Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431: 1092–1095.
|
[5] | Tyson RV, Pearson TH (1991) Modern and ancient continental shelf anoxia: an overview. In: Tyson RV, Pearson TH, editors. Modern and ancient continental shelf anoxia. pp. 27–34. Geological Society Special Publication, London.
|
[6] | Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.
|
[7] | Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: A review of its ecological effects and the behavioral responses of benthic macrofauna. Oceanogr Mar Biol 33: 245–303.
|
[8] | Vaquer-Sonyer R, Duarte CM (2009) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci 105: 15452–15457.
|
[9] | J?rgensen BB (1980) Seasonal Oxygen depletion in the bottom waters of a Danish fjord and its effect on the benthic community. Oikos 34: 68–76.
|
[10] | Rosenberg R, Hellman B, Johansson B (1991) Hypoxic tolerance of marine benthic fauna. Mar Ecol Prog Ser 79: 127–131.
|
[11] | Nilsson HC, Rosenberg R (2000) Succession in marine benthic habitats and fauna in response to oxygen deficiency: analysed by sediment profile-imaging and by grab samples. Mar Ecol Prog Ser 197: 139–149.
|
[12] | Snelgrove PVR, Butman CA (1994) Animal–sediment relationships revisited: cause versus effect. Oceanogr Mar Biol 32: 111–177.
|
[13] | Rhoads DC, Cande S (1971) Sediment profile camera for in situ study of organism-sediment relations. Limnol Oceanogr 16: 110–114.
|
[14] | Diaz RJ, Cutter GR Jr (2001) In situ measurement of organism-sediment interaction: rates of burrow formation, abandonment and sediment oxidation, reduction. In: Aller JY, Woodin SA, Aller RC, editors. Organism-sediment interactions. pp. 19–32. University of South Carolina Press, Columbia.
|
[15] | Solan M, Kennedy R (2002) Observation and quantification of in situ animal-sediment relations using time-lapse sediment profile imagery (t-SPI). Mar Ecol Prog Ser 228: 179–191.
|
[16] | Llans? RJ (1992) Effects of hypoxia on estuarine benthos: the lower Rappahannock River (Chesapeake Bay), a case study. Estuar Coast Shelf S 35: 491–515.
|
[17] | Kuo AY, Neilson BJ (1987) Hypoxia and salinity in Virginia estuaries. Estuaries 10: 277–283.
|
[18] | Van Engel WA (1958) The blue crab and its fishery in Chesapeake Bay. Pt. 1-Reproduction, early development, growth, and migration. USF & WS Comm Fish Rev 20: 6–17.
|
[19] | Wenner CA, Musick JA (1975) Food habits and seasonal abundance of the American eel, Anguilla rostrata, from the lower Chesapeake Bay. Chesapeake Sci 16: 62–66.
|
[20] | Daborn GR, Amos CL, Brylinsky M, Christian H, Drapeau G (1993) An ecological cascade effect: Migratory birds affect stability of intertidal sediments. Limnol Oceanogr 38(1): 225–231.
|
[21] | Anderson F?, Kristensen E (1991) Effects of burrowing macrofauna on organic matter decomposition in coastal marine sediments. The environmental impact of burrowing animals and animal burrows. pp. 69–88. Symp Zool Soc Lond, Clarendon.
|
[22] | Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem Geo 3–4: 331–345.
|
[23] | Furukawa Y, Bentley SJ, Lavoie D (2001) Bioirrigation modeling in experimental benthic mesocosms. J Mar Res 59: 417–452.
|
[24] | Gilbert F, River L, Bertrand JC (1994) The in vitro influence of the burrowing polychaete Nereis diversicolor on the fate of petroleum hydrocarbons in marine sediments. Chemosphere 29: 1–12.
|
[25] | Rowden AA, Jones MB, Morris AW (1998) The role of Callianassa subterranean (Montagu) (Thalassinidea) in sediment resuspension in the North Sea. Cont Shelf Res 18: 1365–1380.
|
[26] | Aller RC, Yingst JY (1985) Effects of the marine deposit-feeders Heteromastus filiformis (Polychaeta), Macoma balthica (Bivalvia) and Tellina texana (Bivalvia) on average sedimentary solute transport, reaction rates and microbial distributions. J Mar Res 43: 615–645.
|
[27] | Dorgan KM, Jumars PA, Johnson BD, Boudreau BP (2006) Macrofaunal burrowing: the medium is the message. Oceanogr Mar Biol 44: 85–121.
|
[28] | Guinasso NL, Schink DR (1975) Quantitative estimates of biological mixing rates in abyssal sediments. J Geophys Res 80: 3032–3043.
|
[29] | Aller RC, Aller JY (1998) The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. J Mar Res 56: 905–936.
|
[30] | Rosenberg R (2001) Marine benthic faunal successional stages and related sedimentary activity. Sci Mar 65: 107–119.
|
[31] | Fran?ois F, Gerino M, Stora G, Durbec JP, Poggiale JC (2002) Functional approach to sediment reworking by gallery-forming macrobenthic organisms: modeling and application with the polychaete Nereis diversicolor. Mar Ecol Prog Ser 229: 127–136.
|
[32] | De Deckere EMGT, Tolhurst TJ, De Brouwer JFC (2001) Destabilization of cohesive intertidal sediments by infauna. Estuar Coast Shelf S 53: 665–669.
|
[33] | J?rgenson BB, Fenchel T (1974) The sulfur cycle of a marine sediment model system. Mar Biol 24: 189–201.
|
[34] | Graf G (1992) Benthic-pelagic coupling: a benthic review. Oceanogr Mar Biol 30: 149–190.
|
[35] | Pearson TH, Rosenberg R (1978) Macrobenthic succession in relation to organic enrichment an pollution of the marine environment. Oceanogr Mar Biol 16: 229–311.
|
[36] | Weigelt M, Rumohr H (1986) Effects of wide-range oxygen depletion on benthic fauna and demersal fish in Kiel Bay 1981–1983. Meeresforschung 31: 124–136.
|
[37] | Theede H (1973) Comparative studies on the influence of oxygen deficiency and hydrogen sulphide on marine bottom invertebrates. Netherlands J Sea Res 7: 244–252.
|
[38] | Vissman B (1990) Sulfide detoxification and tolerance in Nereis (Hediste) diversicolor and Nereis (Neanthes) virens (Annelida: Polychaeta). Mar Ecol Prog Ser 59: 229–238.
|
[39] | Bagarinao T (1992) Sulfide as an environmental factor and toxicant: tolerance and adaptations in aquatic organisms. Aquat Toxicol 24: 21–62.
|
[40] | Graco M, Farías L, Molina V, Gutiérrez D, Nielsen LP (2001) Massive developments of microbial mats following phytoplankton blooms in a naturally eutrophic bay: Implications for nitrogen cycling. Limnol Oceanogr 46: 821–832.
|
[41] | Nelson DC, Jorgensen BB, Revsbech NP (1986) Growth pattern and yield of a chemoautotrophic Beggiatoa sp. in oxygen-sulfide microgradients. Appl Environ Microbiol 52: 225–233.
|
[42] | Riedel B, Zuschin M, Haselmair A, Stachowitsch M (2008) Oxygen depletion under glass: Behavioural responses of benthic macrofauna to induced anoxia in the Northern Adriatic. J Exp Mar Biol Ecol 367: 17–27.
|
[43] | Dauer DM (1985) Functional morphology and feeding behavior of Paraprionospio pinnata (Polychaeta: Spionidae). Mar Biol 85: 143–151.
|
[44] | Skipper M, Weiss U, Gray N (2010) Plasticity. Nature 465: 703.
|
[45] | Childress JJ, Seibel BA (1998) Life at stable low oxygen levels: adaptations of animals to oceanic oxygen minimum layers. J Exp Biol 201: 1223–1232.
|
[46] | Mangum CP (1970) Respiratory physiology in annelids. Am Sci 58: 641–637.
|
[47] | Bartolomaeus T (1994) On the ulstrastructure of the coelomic lining in the Annelida, Sipuncula, and Echiura. Microfauna Marina 9: 171–220.
|
[48] | Lamont PA, Gage JD (2000) Morphological responses of macrobenthic polychaetes to low oxygen on the Oman continental slope, NW Arabian Sea. Deep-Sea Res Pt II 47: 9–24.
|
[49] | Gonzalez RR, Qui?ones RA (2000) Pyruvate oxidoreductases involved in glycolytic anaerobic metabolism of polychaetes from the continental shelf off central-south Chile. Estuar Coast Shelf S 51: 507–519.
|
[50] | Levin LA (2003) Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr Mar Biol 41: 1–45.
|
[51] | Bernhard JM, Buck KR, Farmer MA, Bowser SS (2000) The Santa Barbara Basin is a symbiosis oasis. Nature 403: 77–80.
|
[52] | Vinebrooke RD, Cottingham KL, Norberg J, Scheffer M, Dodson SI, et al. (2004) Impacts of multiple stressors on biodiversity and ecosystem functioning: the role of species co-tolerance. Oikos 104: 451–457.
|
[53] | Park K, Kuo AY, Neilson J (1996) A numerical model study of hypoxia in the tidal Rappahannock River of Chesapeake Bay. Estur Coast Shelf S 42: 563–581.
|
[54] | Fenchel T (1969) The ecology of marine macrobenthos. IV. Structure and function of the benthic ecosystem, its chemical and physical factors and microfauna communities with special reference to the ciliated Protozoa. Ophelia 6: 1–182.
|