Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ~65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of this study was to determine the minimum prevalence of GCK-MODY amongst diabetic subjects in Slovakia by sequencing GCK in 100 Slovakian probands with a phenotype consistent with GCK-MODY and to explore the pathogenicity of identified variants through family and functional studies. Twenty-two mutations were identified in 36 families (17 missense) of which 7 (I110N, V200A, N204D, G258R, F419S, c.580-2A>C, c.1113–1114delGC) were novel. Parental DNA was available for 22 probands (covering 14/22 mutations) and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N) mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI) between 0.6 to <0.001 compared to wild-type GCK (1.0). For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP) –mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC50 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]). Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]). The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%. In conclusion, we have identified 22 GCK mutations in 36 Slovakian probands and demonstrate that combining family, bioinformatic and functional studies can aid the interpretation of variants identified by molecular diagnostic screening.
References
[1]
Froguel P, Vaxillaire M, Sun F, Velho G, Zouali H, et al. (1992) Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus. Nature 356: 162–164.
[2]
Ellard S, Bellanne-Chantelot C, Hattersley AT (2008) Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 51: 546–553.
[3]
Murphy R, Ellard S, Hattersley AT (2008) Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. Nat Clin Pract Endocrinol Metab 4: 200–213.
[4]
Pruhova S, Ek J, Lebl J, Sumnik Z, Saudek F, et al. (2003) Genetic epidemiology of MODY in the Czech republic: new mutations in the MODY genes HNF-4alpha, GCK and HNF-1alpha. Diabetologia 46: 291–295.
[5]
Sagen JV, Bjorkhaug L, Molnes J, Raeder H, Grevle L, et al. (2008) Diagnostic screening of MODY2/GCK mutations in the Norwegian MODY Registry. Pediatr Diabetes 9: 442–449.
[6]
Johansen A, Ek J, Mortensen HB, Pedersen O, Hansen T (2005) Half of clinically defined maturity-onset diabetes of the young patients in Denmark do not have mutations in HNF4A, GCK, and TCF1. J Clin Endocrinol Metab 90: 4607–4614.
[7]
Costa A, Bescos M, Velho G, Chevre J, Vidal J, et al. (2000) Genetic and clinical characterisation of maturity-onset diabetes of the young in Spanish families. Eur J Endocrinol 142: 380–386.
[8]
Massa O, Meschi F, Cuesta-Munoz A, Caumo A, Cerutti F, et al. (2001) High prevalence of glucokinase mutations in Italian children with MODY. Influence on glucose tolerance, first-phase insulin response, insulin sensitivity and BMI. Diabetes Study Group of the Italian Society of Paediatric Endocrinology and Diabetes (SIEDP). Diabetologia 44: 898–905.
[9]
Mantovani V, Salardi S, Cerreta V, Bastia D, Cenci M, et al. (2003) Identification of eight novel glucokinase mutations in Italian children with maturity-onset diabetes of the young. Hum Mutat 22: 338.
[10]
Thomson KL, Gloyn AL, Colclough K, Batten M, Allen LI, et al. (2003) Identification of 21 novel glucokinase (GCK) mutations in UK and European Caucasians with maturity-onset diabetes of the young (MODY). Hum Mutat 22: 417.
[11]
Froguel P, Zouali H, Vionnet N, Velho G, Vaxillaire M, et al. (1993) Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. N Engl J Med 328: 697–702.
[12]
Osbak KK, Colclough K, Saint-Martin C, Beer NL, Bellanne-Chantelot C, et al. (2009) Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 30: 1512–1526.
[13]
Gloyn AL, van de Bunt M, Stratton IM, Lonie L, Tucker L, et al. (2009) Prevalence of GCK mutations in individuals screened for fasting hyperglycaemia. Diabetologia 52: 172–174.
[14]
Feigerlova E, Pruhova S, Dittertova L, Lebl J, Pinterova D, et al. (2006) Aetiological heterogeneity of asymptomatic hyperglycaemia in children and adolescents. Eur J Pediatr 165: 446–452.
[15]
Matschinsky FM (2002) Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics. Diabetes 51: Suppl 3S394–404.
[16]
Byrne MM, Sturis J, Clement K, Vionnet N, Pueyo ME, et al. (1994) Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. Journal of Clinical Investigation 93: 1120–1130.
[17]
Gloyn A, Odili S, Buettger C, Njolstad PR, Shiota C, et al. (2004) Glucokinase and the regulation of blood sugar: A mathematical model predicts the threshold for glucose stimulated insulin release for GCK gene mutations that cause hyper- and hypoglycaemia. In: Magnuson M, Matschinsky F, editors. Glucokinase and Glycemic Diseases: from the basics to novel therapeutics: Karger. pp. 92–109.
[18]
Stride A, Vaxillaire M, Tuomi T, Barbetti F, Njolstad PR, et al. (2002) The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia 45: 427–435.
[19]
Steele AM, Tribble ND, Caswell R, Wensley KJ, Hattersley AT, et al. (2011) The previously reported T342P GCK missense variant is not a pathogenic mutation causing MODY. Diabetologia.
[20]
Boutin P, Vasseur F, Samson C, Wahl C, Froguel P (2001) Routine mutation screening of HNF-1alpha and GCK genes in MODY diagnosis: how effective are the techniques of DHPLC and direct sequencing used in combination? Diabetologia 44: 775–778.
[21]
Liang Y, Kesavan P, Wang LQ, Niswender K, Tanizawa Y, et al. (1995) Variable effects of maturity-onset-diabetes-of-youth (MODY)-associated glucokinase mutations on substrate interactions and stability of the enzyme. Biochemical Journal 309(Pt 1): 167–173.
[22]
Davis EA, Cuesta-Munoz A, Raoul M, Buettger C, Sweet I, et al. (1999) Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis. Diabetologia 42: 1175–1186.
[23]
Wabitsch M, Lahr G, Van de Bunt M, Marchant C, Lindner M, et al. (2007) Heterogeneity in disease severity in a family with a novel G68V GCK activating mutation causing persistent hyperinsulinaemic hypoglycaemia of infancy. Diabet Med 24: 1393–1399.
[24]
Brocklehurst KJ, Davies RA, Agius L (2004) Differences in regulatory properties between human and rat glucokinase regulatory protein. Biochemical Journal 378: 693–697.
[25]
Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PR, et al. (2009) The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet 18: 4081–4088.
[26]
Beer NL, van de Bunt M, Colclough K, Lukacs C, Arundel P, et al. (2011) Discovery of a Novel Site Regulating Glucokinase Activity following Characterization of a New Mutation Causing Hyperinsulinemic Hypoglycemia in Humans. J Biol Chem 286: 19118–19126.
[27]
Kesavan P, Wang L, Davis E, Cuesta A, Sweet I, et al. (1997) Structural instability of mutant beta-cell glucokinase: implications for the molecular pathogenesis of maturity-onset diabetes of the young (type-2). Biochemical Journal 322(Pt 1): 57–63.
[28]
Sagen JV, Odili S, Bjorkhaug L, Zelent D, Buettger C, et al. (2006) From clinicogenetic studies of maturity-onset diabetes of the young to unraveling complex mechanisms of glucokinase regulation. Diabetes 55: 1713–1722.
[29]
Gloyn AL, Odili S, Zelent D, Buettger C, Castleden HA, et al. (2005) Insights into the structure and regulation of glucokinase from a novel mutation (V62M), which causes maturity-onset diabetes of the young. J Biol Chem 280: 14105–14113.
[30]
Shields BM, McDonald TJ, Ellard S, Campbell MJ, Hyde C, et al. (2012) The development and validation of a clinical prediction model to determine the probability of MODY in patients with young-onset diabetes. Diabetologia. Jan 5. in print.
[31]
Burke CV, Buettger CW, Davis EA, McClane SJ, Matschinsky FM, et al. (1999) Cell-biological assessment of human glucokinase mutants causing maturity-onset diabetes of the young type 2 (MODY-2) or glucokinase-linked hyperinsulinaemia (GK-HI). Biochemical Journal 342(Pt 2): 345–352.
[32]
Ng PC, Henikoff S (2001) Predicting deleterious amino acid substitutions. Genome Res 11: 863–874.
[33]
Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30: 3894–3900.
[34]
Schwarz JM, Rodelsperger C, Schuelke M, Seelow D (2010) MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods 7: 575–576.
[35]
Ziemssen F, Bellanne-Chantelot C, Osterhoff M, Schatz H, Pfeiffer AF (2002) To: Lindner T, Cockburn BN, Bell GI (1999). Molecular genetics of MODY in Germany. Diabetologia 42: 121–123. Diabetologia 45: 286–287; author reply 287–288.
[36]
Arden C, Trainer A, de la Iglesia N, Scougall KT, Gloyn AL, et al. (2007) Cell biology assessment of glucokinase mutations V62M and G72R in pancreatic beta-cells: evidence for cellular instability of catalytic activity. Diabetes 56: 1773–1782.
[37]
Kamata K, Mitsuya M, Nishimura T, Eiki J, Nagata Y (2004) Structural basis for allosteric regulation of the monomeric allosteric enzyme human glucokinase. Structure 12: 429–438.
[38]
Schober E, Rami B, Grabert M, Thon A, Kapellen T, et al. (2009) Phenotypical aspects of maturity-onset diabetes of the young (MODY diabetes) in comparison with Type 2 diabetes mellitus (T2DM) in children and adolescents: experience from a large multicentre database. Diabet Med 26: 466–473.
[39]
Shields BM, Hicks S, Shepherd MH, Colclough K, Hattersley AT, et al. (2010) Maturity-onset diabetes of the young (MODY): how many cases are we missing? Diabetologia 53: 2504–2508.
[40]
Kropff J, Selwood MP, McCarthy MI, Farmer AJ, Owen KR (2011) Prevalence of monogenic diabetes in young adults: a community-based, cross-sectional study in Oxfordshire, UK. Diabetologia 54: 1261–1263.
[41]
Pruhova S, Dusatkova P, Sumnik Z, Kolouskova S, Pedersen O, et al. (2010) Glucokinase diabetes in 103 families from a country-based study in the Czech Republic: geographically restricted distribution of two prevalent GCK mutations. Pediatr Diabetes 11: 529–535.
[42]
Gasperikova D, Tribble ND, Stanik J, Huckova M, Misovicova N, et al. (2009) Identification of a novel beta-cell glucokinase (GCK) promoter mutation (?71G>C) that modulates GCK gene expression through loss of allele-specific Sp1 binding causing mild fasting hyperglycemia in humans. Diabetes 58: 1929–1935.
[43]
Hager J, Blanche H, Sun F, Vaxillaire NV, Poller W, et al. (1994) Six mutations in the glucokinase gene identified in MODY by using a nonradioactive sensitive screening technique. Diabetes 43: 730–733.
[44]
Estalella I, Rica I, Perez de Nanclares G, Bilbao JR, Vazquez JA, et al. (2007) Mutations in GCK and HNF-1alpha explain the majority of cases with clinical diagnosis of MODY in Spain. Clin Endocrinol (Oxf) 67: 538–546.
[45]
Lorini R, Klersy C, d'Annunzio G, Massa O, Minuto N, et al. (2009) Maturity-onset diabetes of the young in children with incidental hyperglycemia: a multicenter Italian study of 172 families. Diabetes Care 32: 1864–1866.
[46]
Takeda J, Gidh-Jain M, Xu LZ, Froguel P, Velho G, et al. (1993) Structure/function studies of human beta-cell glucokinase. Enzymatic properties of a sequence polymorphism, mutations associated with diabetes, and other site-directed mutants. J Biol Chem 268: 15200–15204.
[47]
Stoffel M, Froguel P, Takeda J, Zouali H, Vionnet N, et al. (1992) Human glucokinase gene: isolation, characterization, and identification of two missense mutations linked to early-onset non-insulin-dependent (type 2) diabetes mellitus. Proc Natl Acad Sci U S A 89: 7698–7702.
[48]
Pinterova D, Ek J, Kolostova K, Pruhova S, Novota P, et al. (2007) Six novel mutations in the GCK gene in MODY patients. Clin Genet 71: 95–96.