Type I restriction-modification (RM) systems are comprised of two multi-subunit enzymes, the methyltransferase (~160 kDa), responsible for methylation of DNA, and the restriction endonuclease (~400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits. An engineered RM system, EcoR124INT, based on the N-terminal domain of the specificity subunit of EcoR124I was constructed that recognises the symmetrical sequence GAAN7TTC and is active as a methyltransferase. Here, we investigate the restriction endonuclease activity of R. EcoR124INT in vitro and the subunit assembly of the multi-subunit enzyme. Finally, using small-angle neutron scattering and selective deuteration, we present a low-resolution structural model of the endonuclease and locate the motor subunits within the multi-subunit enzyme. We show that the covalent linkage between the two target recognition domains of the specificity subunit is not required for subunit assembly or enzyme activity, and discuss the implications for the evolution of Type I enzymes.
References
[1]
Wilson GG (1991) Organization of restriction–modification systems. Nucleic Acids Res. 19: 2539–2566.
[2]
Bickle TA, Kruger DH (1993) Biology of DNA restriction. Microbiol. Rev. 57: 434–450.
[3]
Murray NE (2000) Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev 64: 412–434.
[4]
Calisto BM, Pich OQ, Pi?ol J, Fita I, Querol E, et al. (2005) Crystal structure of a putative type I restriction-modification S subunit from Mycoplasma genitalium. J. Mol. Biol. 351: 749–762.
[5]
Kim JS, De Giovanni A, Jancarik J, Adams PD, Yokota H, et al. (2005) Crystal structure of DNA sequence specificity subunit of a type I restriction-modification enzyme and its functional implications. Proc. Natl. Acad. Sci. U.S.A. 102: 3248–3253.
[6]
Uyen NT, Park S, Choi J, Lee HJ, Nishi K, et al. (2009) The fragment structure of a putative HsdR subunit of a type I restriction enzyme from Vibrio vulnificus YJ016: implications for DNA restriction and translocation activity. Nucleic Acids Res. 37: 6960–6969.
[7]
Lapkouski M, Panjikar S, Janscak P, Smatanova IK, Carey J, et al. (2008) Structure of the motor subunit of type I restriction-modification complex EcoR124I. Nat. Struct. Mol. Biol. 16: 94–95.
[8]
Gao P, Tang Q, An X, Yan X, Liang D (2011) Structure of HsdS subunit from Thermoanaerobacter tengcongensis sheds lights on mechanism of dynamic opening and closing of Type I Methyltransferase. PLoS ONE 6, e17346: doi:10.1371/journal.pone.0017346.
[9]
Callow P, Sukhodub A, Taylor J, Kneale G (2007) Shape and subunit organisation of the DNA methyltransferase M.AhdI. J. Mol. Biol. 69: 177–185.
[10]
Kennaway CK, Obarska-Kosinska A, White JH, Tuszynska I, Cooper LP, et al. (2009) The structure of M.EcoKI Type I DNA methyltransferase with a DNA mimic antirestriction protein. Nucleic Acids Res. 37: 762–770.
[11]
Taylor JE, Callow P, Swiderska A, Kneale GG (2010) Structural and Functional Analysis of the Engineered Type I DNA Methyltransferase EcoR124INT. J. Mol. Biol. 398: 391–399.
[12]
Kennaway CK, Taylor JE, Song CF, Potrzebowski W, Nicholson W, et al. (2012) Structure and operation of the DNA-translocating Type I DNA restriction enzymes. Gene. Dev. 26: 92–104.
[13]
Price C, Shepherd JCW, Bickle TA (1987) DNA recognition by a new family of type I restriction enzymes: a unique relationship between two different DNA specificities. EMBO J. 6: 1493–1498.
[14]
Taylor I, Watts D, Kneale G (1993) Substrate recognition and selectivity in the type-IC DNA modification methylase M.EcoR124I. Nucleic Acids Res. 21: 4929–4935.
[15]
Patel J, Taylor I, Dutta CF, Kneale G, Firman K (1992) High-level expression of the cloned genes encoding the subunits of and intact DNA methyltransferase, M.EcoR124I. Gene 112: 21–27.
[16]
Taylor I, Patel J, Firman K, Kneale GG (1992) Purification and biochemical-characterization of the EcoR124 type-I modification methylase. Nucl. Acids Res. 20: 179–186.
[17]
Smith MA, Mernagh DR, Kneale GG (1998) Expression and characterisation of the N-terminal fragment of the HsdS subunit of M.EcoR124I. Biol. Chem. 379: 505–509.
[18]
Smith MA, Read CM, Kneale GG (2001) Domain structure and subunit interactions in the type I DNA methyltransferase M.EcoR124I. J. Mol. Biol. 314: 41–50.
[19]
Janscak P, Abadjieva A, Firman K (1996) The type I restriction endonuclease R.EcoR124I: over-production and biochemical properties. J. Mol. Biol. 257: 977–991.
[20]
Szczelkun MD, Janscak P, Firman K, Halford SE (1997) Selection of non-specific DNA cleavage sites by the type IC restriction endonuclease EcoR124I. J. Mol. Biol. 271: 112–123.
[21]
Mernagh DR, Janscak P, Firman K, Kneale GG (1998) Protein-protein and protein-DNA interactions in the type I restriction endonuclease R.EcoR124I. Biol. Chem. 379: 497–503.
[22]
Firman K, Szczelkun MD (2000) Measuring motion on DNA by the type I restriction endonuclease EcoR1241 using triplex displacement. EMBO J. 19: 2094–2102.
[23]
Seidel R, van Noort J, van der Scheer C, Bloom JGP, Dekker NH, et al. (2004) Real-time observation of DNA translocation by the type I restriction modification enzyme EcoR124I. Nat. Struct. Mol. Biol. 11: 838–843.
[24]
Obarska-Kosinska A, Taylor JE, Callow P, Orlowski J, Bujnicki JM, et al. (2008) HsdR subunit of the Type I restriction-modification enzyme EcoR124I: biophysical characterisation and structural modelling. J. Mol. Biol. 376: 438–452.
[25]
Orthaber D, Bergmann A, Glatter O (2000) SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J. Appl.Crystallogr. 33: 218–225.
[26]
Svergun DI, Nierhaus KH (2000) A map of protein-rRNA distribution in the 70 S Escherichia coli ribosome. J. Biol. Chem. 275: 14432–14439.
[27]
Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling, Biophys. J. 78: 1606–1619.
[28]
Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Computer-aided interpretation of analytical sedimentation data for proteins. In (Harding, S.E., Rowe, A. J. & Horton, J. C., eds), 90–125, Royal Society of Chemistry, Cambridge, UK.
[29]
Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J. Appl. Crystallogr. 36: 1277–1282.
[30]
Fournet G, Guinier A (1950) L’etat actuel de la theorie de la diffusion des rayons-X aux petits angles. J. Phys. Radium 11: 516–520.
[31]
Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25: 495–503.
[32]
Konarev PV, Petoukhov MV, Svergun DI (2001) MASSHA-a graphic system for rigid body modelling of macromolecular complexes against solution scattering data. J. Appl. Crystallogr. 34: 527–532.
[33]
Whitten AE, Cai S, Trewhella J (2008) MULCh: ModULes for the analysis of small-angle neutron Contrast variation data from biomolecular assemblies. J. Appl. Crystallogr. 41: 222–226.
[34]
Delano WL (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA.