全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Spherical Lactic Acid Bacteria Activate Plasmacytoid Dendritic Cells Immunomodulatory Function via TLR9-Dependent Crosstalk with Myeloid Dendritic Cells

DOI: 10.1371/journal.pone.0032588

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plasmacytoid dendritic cells (pDC) are a specialized sensor of viral and bacterial nucleic acids and a major producer of IFN-α that promotes host defense by priming both innate and acquired immune responses. Although synthetic Toll-like receptor (TLR) ligands, pathogenic bacteria and viruses activate pDC, there is limited investigation of non-pathogenic microbiota that are in wide industrial dietary use, such as lactic acid bacteria (LAB). In this study, we screened for LAB strains, which induce pDC activation and IFN-α production using murine bone marrow (BM)-derived Flt-3L induced dendritic cell culture. Microbial strains with such activity on pDC were absent in a diversity of bacillary strains, but were observed in certain spherical species (Lactococcus, Leuconostoc, Streptococcus and Pediococcus), which was correlated with their capacity for uptake by pDC. Detailed study of Lactococcus lactis subsp. lactis JCM5805 and JCM20101 revealed that the major type I and type III interferons were induced (IFN-α, -β, and λ). IFN-α induction was TLR9 and MyD88-dependent; a slight impairment was also observed in TLR4-/- cells. While these responses occurred with purified pDC, IFN-α production was synergistic upon co-culture with myeloid dendritic cells (mDC), an interaction that required direct mDC-pDC contact. L. lactis strains also stimulated expression of immunoregulatory receptors on pDC (ICOS-L and PD-L1), and accordingly augmented pDC induction of CD4+CD25+FoxP3+ Treg compared to the Lactobacillus strain. Oral administration of L. lactis JCM5805 induced significant activation of pDC resident in the intestinal draining mesenteric lymph nodes, but not in a remote lymphoid site (spleen). Taken together, certain non-pathogenic spherical LAB in wide dietary use has potent and diverse immunomodulatory effects on pDC potentially relevant to anti-viral immunity and chronic inflammatory disease.

References

[1]  Asselin-Paturel C, Boonstra A, Dalod M, Durand I, Yessaad N, et al. (2001) Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2: 1144–1150.
[2]  Hoene V, Peiser M, Wanner R (2006) Human monocyte-derived dendritic cells express TLR9 and react directly to the CpG-A oligonucleotide D19. J Leukoc Biol 80: 1328–1336.
[3]  Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, et al. (2004) Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101: 5598–5603.
[4]  Asselin-Paturel C, Brizard G, Chemin K, Boonstra A, O’Garra A, et al. (2005) Type I interferon dependence of plasmacytoid dendritic cell activation and migration. J Exp Med 201: 1157–1167.
[5]  Biron CA (2001) Interferons α and β as immune regulators–A New Look. Immunity 14: 661–664.
[6]  Jego G, Palucka AK, Blanck JP, Chalouni C, Pascual V, et al. (2003) Plasmacytoid dendritic cells induce plasma cell differentiation through type I interferon and interleukin 6. Immunity 19: 225–234.
[7]  Levy DE, Garcia -Sastre A (2001) The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev 12: 143–156.
[8]  Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, et al. (2003) IFN-λs mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 4: 69–77.
[9]  Dresing P, Borkens S, Kocur M, Kropp S, Scheu S (2010) A Fluorescence Reporter Model Defines “Tip-DC” as the cellular source of interferon β in murine Listeriosis. PLoS ONE 5: e15567.
[10]  Wolk K, Witte K, Witte E, Proesch S, Schulze-Tanzil G, et al. (2008) Maturing dendritic cells are an important source of IL-29 and IL-20 that may cooperatively increase the innate immunity of keratinocytes. J Leuk Biol 83: 1181–1193.
[11]  Megjugorac NJ, Gallagher GE, Gallagher G (2009) Modulation of human plasmacytoid DC function by IFN-λ1 (IL-29). J Leuk Biol 86: 1359–1363.
[12]  Siegemund S, Hartl A, von Buttlar H, Dautel F, Raue R, et al. (2009) Conventional bone marrow-derived dendritic cells contribute to Toll-like receptor-independent production of α/β interferon in response to inactivated Parapoxvirus Ovis. J Virol 83: 9411–9422.
[13]  William V, Raffaella B, Fabio F, Denise B, Silvano S, et al. (2003) Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas. J Pathol 200: 255–268.
[14]  Sadler AJ, Williams BRG (2008) Interferon-inducible antiviral effectors. Nat Rev Immunol 8: 559–568.
[15]  Montoya M, Schiavoni G, Mattei F, Gresser I, Belardelli F, et al. (2002) Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood 99: 3263–3271.
[16]  Le Bon A, Etchart N, Rossmann C, Ashton M, Hou S, et al. (2003) Cross-priming of CD8+ T cells stimulated by virus-induced type I interferon. Nat Immunol 4: 1009–1015.
[17]  Cella M, Facchetti F, Lanzavecchia A, Colonna M (2000) Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 1: 305–310.
[18]  Kamath AT, Sheasby CE, Tough DF (2005) Dendritic cells and NK cells stimulate bystander T cell activation in response to TLR agonists through secretion of IFN-αβ and IFN-γ. J Immunol 174: 767–776.
[19]  Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, et al. (2001) Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14: 461–470.
[20]  Le Bon A, Tough DF (2002) Links between innate and adaptive immunity via type I interferon. Curr Opin Immunol 14: 432–436.
[21]  Duc-Goiran P, Zernicki L (1981) Interferons induced by Chlamydia trachomatis in human lymphocyte cultures. Biomedicine 34: 88–93.
[22]  Hess CB, Niesel DW, Klimpel GR (1989) The induction of interferon production in fibroblasts by invasive bacteria: a comparison of Salmonella and Shigella species. Microb Pathog 7: 111–120.
[23]  Birke C, Peter HH, Langenberg U, Muller-Hermes WJ, Peters JH, et al. (1981) Mycoplasma contamination in human tumor cell lines: effect on interferon induction and susceptibility to natural killing. J Immunol 127: 94–98.
[24]  Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, et al. (2001) Infection of human macrophages and dendritic cells with Mycobacterium tuberculosis Induces a differential cytokine gene expression that modulates T cell response. J Immunol 166: 7033–7041.
[25]  Nakane A, Minagawa T (1981) Alternative induction of IFN-α and IFN-γ by Listeria monocytogenes in human peripheral blood mononuclear leukocyte cultures. J Immunol 126: 2139–2142.
[26]  Svensson H, Cederblad B, Lindahl M, Alm G (1996) Stimulation of natural interferon-α/β-producing cells by Staphylococcus aureus. J Interferon Cytokine Res 16: 7–16.
[27]  Parcina M, Wendt C, Goetz F, Zawatzky R, Zahringer U, et al. (2008) Staphylococcus aureus-induced plasmacytoid dendritic cell activation is based on an IgG-mediated memory response. J Immunol 181: 3823–3833.
[28]  Murosaki S, Yamamoto Y, Ito K, Inokuchi T, Kusaka H, et al. (1998) Heat-killed Lactobacillus plantarum L-137 suppresses naturally fed antigen-specific IgE production by stimulation of IL-12 production in mice. J Allergy Clin Immunol 102: 57–64.
[29]  Shida K, Makino K, Morishita A, Takamizawa K, Hachimura S, et al. (1998) Lactobacillus casei inhibits antigen-induced IgE secretion through regulation of cytokine production in murine splenocyte cultures. Int Arch Allergy Immunol 115: 278–287.
[30]  Pochard P, Gosset P, Grangette C, Andre C, Tonnel AB, et al. (2002) Lactic acid bacteria inhibit TH2 cytokine production by mononuclear cells from allergic patients. J Allergy Clin Immunol 110: 617–623.
[31]  Repa A, Grangette C, Daniel C, Hochreiter R, Hoffmann-Sommergruber K, et al. (2003) Mucosal co-application of lactic acid bacteria and allergen induces counter-regulatory immune responses in a murine model of birch pollen allergy. Vaccine 22: 87–95.
[32]  Fujiwara D, Inoue S, Wakabayashi H, Fujii T (2004) The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Th2 cytokine expression and balance. Int Arch Allergy Immunol 135: 205–215.
[33]  Wakabayashi H, Nariai C, Takemura F, Nakao W, Fujiwara D (2008) Dietary supplementation with lactic acid bacteria attenuates the development of atopic-dermatitis-like skin lesions in NC/Nga mice in a strain-dependent manner. Int Arch Allergy Immunol 145: 141–151.
[34]  Fujiwara D, Watanabe H, Nishida S, Iino H (2005) A double-blind trial of Lactobacillus paracasei strain KW3110 administration for immunomodulation in patients with pollen allergy. Allergol Int 54: 143–149.
[35]  Pessi T, Sutas Y, Hurme M, Isolauri E (2000) Interleukin-10 generation in atopic children following oral Lactobacillus rhamnosus GG. Clin Exp Allergy 30: 1804–1808.
[36]  Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, et al. (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357: 1076–1079.
[37]  Kalliomaki M, Salminen S, Poussa T, Arvilommi H, Isolauri E (2003) Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 361: 1869–1871.
[38]  Fujiwara D, Wei B, Presley LL, Brewer S, McPherson M, et al. (2008) Systemic control of plasmacytoid dendritic cells by CD8+ T cells and commensal microbiota. J Immunol 180: 5843–5852.
[39]  Varmanen P, Rantanen T, Palva A, Tynkkynen S (1998) Cloning and characterization of a prolinase gene (pepR) from Lactobacillus rhamnosus. Appl Environ Microbiol 64: 1831–1836.
[40]  Ito T, Yang M, Wang YH, Lande R, Gregorio J, et al. (2007) Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med 204: 105–115.
[41]  Sharma MD, Baban B, Chandler P, Hou DY, Singh N, et al. (2007) Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 117: 2570–2582.
[42]  Onoguchi K, Yoneyama M, Takemura A, Akira S, Taniguchi T, et al. (2007) Viral infections activate types I and III interferon genes through a common mechanism. J Biol Chem 282: 7576–7581.
[43]  Schroder NWJ, Morath S, Alexander C, Hamann L, Hartung T, et al. (2003) Lipoteichoic Acid (LTA) of Streptococcus pneumoniaeand Staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J Biol Chem 278: 15587–15594.
[44]  Piccioli D, Sammicheli C, Tavarini S, Nuti S, Frigimelica E, et al. (2009) Human plasmacytoid dendritic cells are unresponsive to bacterial stimulation and require a novel type of cooperation with myeloid dendritic cells for maturation. Blood 113: 4232–4239.
[45]  Nagai S, Mimuro H, Yamada T, Baba Y, Moro K, et al. (2007) Role of Peyer’s patches in the induction of Helicobacter pylori-induced gastritis. Proc Natl Acad Sci USA 104: 8971–8976.
[46]  Greene JA, DeVecchio JL, Gould MP, Auletta JJ, Heinzel FP (2006) In vivo and in vitro regulation of type I IFN synthesis by synergistic effects of CD40 and type II IFN. J Immunol 176: 5995–6003.
[47]  Kuwajima S, Sato T, Ishida K, Tada H, Tezuka H, et al. (2006) Interleukin 15-dependent crosstalk between conventional and plasmacytoid dendritic cells is essential for CpG-induced immune activation. Nat Immunol 7: 740–746.
[48]  Kitazawa H, Tomioka Y, Matsumura K, Aso H, Mizugaki M, et al. (1994) Expression of mRNA encoding IFN α in macrophages stimulated with Lactobacillus gasseri. FEMS Microbiol Lett 120: 315–321.
[49]  Izumo T, Maekawa T, Ida M, Noguchi A, Kitagawa Y, et al. (2010) Effect of intranasal administration of Lactobacillus pentosus S-PT84 on influenza virus infection in mice. Int Immunopharmacol 10: 1101–1106.
[50]  Izumo T, Maekawa T, Ida M, Kishi A, Akatani K, et al. (2011) Effect of Lactobacillus pentosus S-PT84 ingestion on IFN-α; production from plasmacytoid dendritic cells by virus stimulation. Biosci Biotech Biochem 75: 370–372.
[51]  Pott J, Mahlakoiv T, Mordstein M, Duerr CU, Michiels T, et al. (2011) IFN-λ determines the intestinal epithelial antiviral host defense. Proc Natl Acad Sci USA 108: 7944–7949.
[52]  Mao C, Wang S, Xiao Y, Xu J, Jiang Q, et al. (2011) Impairment of regulatory capacity of CD4+CD25+ regulatory T cells mediated by dendritic cell polarization and hyperthyroidism in Graves’ Disease. J Immunol 186: 4734–4743.
[53]  Banchereau J, Pascual V (2006) Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25: 383–392.
[54]  Jarnicki AG, Conroy H, Brereton C, Donnelly G, Toomey D, et al. (2008) Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J Immunol 180: 3797–3806.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133