Piwi- interacting RNAs (piRNAs), a new class of small RNAs discovered from mammalian testes, are involved in transcriptional silencing of retrotransposons and other genetic elements in germ line cells. In order to identify a full transcriptome set of piRNAs expressed in the sexually mature porcine testes, small RNA fractions were extracted and were subjected to a Solexa deep sequencing. We cloned 6,913,561 clean reads of Sus Scrofa small RNAs (18–30 nt) and performed functional characterization. Sus Scrofa small RNAs showed a bimodal length distribution with two peaks at 21 nt and 29 nt. Then from 938,328 deep-sequenced small RNAs (26–30 nt), 375,195 piRNAs were identified by a k-mer scheme and 326 piRNAs were identified by homology searches. All piRNAs predicted by the k-mer scheme were then mapped to swine genome by Short Oligonucleotide Analysis Package (SOAP), and 81.61% of all uniquely mapping piRNAs (197,673) were located to 1124 defined genomic regions (5.85 Mb). Within these regions, 536 and 501 piRNA clusters generally distributed across only minus or plus genomic strand, 48 piRNA clusters distributed on two strands but in a divergent manner, and 39 piRNA clusters distributed on two strands in an overlapping manner. Furthermore, expression pattern of 7 piRNAs identified by homology searches showed 5 piRNAs displayed a ubiquitous expression pattern, although 2 piRNAs were specifically expressed in the testes. Overall, our results provide new information of porcine piRNAs and their specific expression pattern in porcine testes suggests that piRNAs have a role in regulating spermatogenesis.
References
[1]
de Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N (1998) Spermatogenesis. Hum Reprod 13 (Suppl 1): 1–8.
[2]
Ro S, Park C, Song R, Nguyen D, Jin J, et al. (2007) Cloning and expression profiling of testis-expressed piRNA-like RNAs. RNA 13: 1693–1702.
[3]
Kleene KC (2001) A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells. Mech Dev 106: 3–23.
[4]
Luo L, Ye L, Liu G, Shao G, Zheng R, et al. (2010) Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One 5: e11744.
[5]
Papaioannou MD, Nef S (2010) microRNAs in the testis: building up male fertility. J Androl 31: 26.
[6]
He Z, Kokkinaki M, Pant D, Gallicano GI, Dym M (2009) Small RNA molecules in the regulation of spermatogenesis. Reproduction 137: 901–911.
[7]
Grivna ST, Beyret E, Wang Z, Lin H (2006) A novel class of small RNAs in mouse spermatogenic cells. Genes Dev 13: 1709–1714.
[8]
Grivna ST, Pyhtila B, Lin H (2006) MIWI associates with translational machinery and PIWI-interacting RNAs (piRNAs) in regulating spermatogenesis. Proc Natl Acad Sci U S A 103: 13415–13420.
[9]
Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, et al. (2006) Characterization of the piRNA complex from rat testes. Science 313: 363–367.
[10]
Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10: 94–108.
Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, et al. (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128: 1089–1103.
[14]
Kawaoka S, Arai Y, Kadota K, Suzuki Y, Hara K, et al. (2011) Zygotic amplification of secondary piRNAs during silkworm embryogenesis. RNA 17: 1401–1407.
[15]
Klattenhoff C, Xi H, Li C, Lee S, Xu J, et al. (2009) The Drosophila HP1 homolog Rhino is required for transposon silencing and piRNA production by dual-strand clusters. Cell 138: 1137–1149.
[16]
Aravin AA, van der Heijden GW, Casta?eda J, Vagin VV, Hannon GJ, et al. (2009) Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet 5: e1000764.
[17]
Ma L, Buchold GM, Greenbaum MP, Roy A, Burns KH, et al. (2009) GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet 5: e1000635.
[18]
Saito K, Nishida KM, Mori T, Kawamura Y, Miyoshi K, et al. (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20: 2214–2222.
[19]
Rouget C, Papin C, Boureux A, Meunier AC, Franco B, et al. (2010) Maternal mRNA deadenylation and decay by the piRNA pathway in the early Drosophila embryo. Nature 467: 1128–1132.
[20]
Siomi MC, Sato K, Pezic D, Aravin AA (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12: 246–258.
[21]
Happel N, Doenecke D, Sekeri-Pataryas KE, Sourlingas TG (2008) H1 histone subtype constitution and phosphorylation state of the ageing cell system of human peripheral blood lymphocytes. Exp Gerontol 43: 184–199.
[22]
Sai Lakshmi S, Agrawal S (2008) piRNABank: a web resource on classified and clustered Piwi-interacting RNAs. Nucleic Acids Res 36: D173–177.
[23]
Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, et al. (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442: 203–207.
[24]
Girard A, Sachidanandam R, Hannon GJ, Carmell MA (2006) A germline-specific class of small RNAs binds mammalian piwi proteins. Nature 442: 199–202.
[25]
Chen X, Li Q, Wang J, Guo X, Jiang X, et al. (2009) Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol 10: R78.
[26]
Xie SS, Li XY, Liu T, Cao JH, Zhong Q, et al. (2011) Discovery of porcine microRNAs in multiple tissues by a Solexa deep sequencing approach. PLoS One 6: e16235.
[27]
Zhang Y, Wang X, Kang L (2011) A k-mer scheme to predict piRNAs and characterize locust piRNAs. Bioinformatics 27: 771–776.
[28]
Drabent B, Doenecke D (1997) Testis-specific expression of the mouse histone gene Hit is regulated by several promoter elements. Biol Reprod 57: 1375–1383.
[29]
Lennox RW, Cohen LH (1984) The alterations in H1 histone complement during mouse spermatogenesis and their significance for H1 subtype function. Dev Biol 103: 80–84.
[30]
Iguchi N, Xu M, Hori T, Hecht NB (2007) Noncoding RNAs of the mammalian testis: the meiotic transcripts Nct1 and Nct2 encode piRNAs. Ann N Y Acad Sci. 1120: 84–94.
[31]
Cheng J, Deng H, Xiao B, Zhou H, Zhou F, et al. (2012) piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Lett 315: 12–17.
[32]
Esposito T, Magliocca S, Formicola D, Gianfrancesco F (2011) piR_015520 belongs to Piwi-associated RNAs regulates expression of the human melatonin receptor 1A gene. PLoS One 6: e22727.
[33]
Aravin AA, Chan DC (2011) piRNAs meet mitochondria. Dev Cell 20: 287–288.
[34]
Watanabe T, Chuma S, Yamamoto Y, Kuramochi-Miyagawa S, Totoki Y, et al. (2011) MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. Dev Cell 20: 364–375.
[35]
Huang H, Gao Q, Peng X, Choi SY, Sarma K, et al. (2011) piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial -surface lipid signaling. Dev Cell 20: 376–387.
[36]
Harayama H, Nanjo I, Kanda S, Kato S (1991) Testicular development in Chinese Meishan boars. Theriogenology 36: 637–643.
[37]
Hochereau-de Reviers MT, Perreau C, Rahal-Perola V, Rahal-Perola V, Royere D (1999) Onset of spermatogenesis in Meishan and Large White male piglets. Reprod Dom Anim 34: 213–219.
[38]
Zhou X, Zuo Z, Zhou F, Zhao W, Sakaguchi Y, et al. (2010) Profiling Sex-specific piRNAs in Zebrafish. Genetics 186: 1175–1185.
[39]
Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, et al. (2007) A role for Piwi and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129: 69–82.
[40]
Lee EJ, Banerjee S, Zhou H, Jammalamadaka A, Arcila M, et al. (2011) Identification of piRNAs in the central nervous system. RNA 17: 1090–1099.
[41]
Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc 4: 44–57.
[42]
Sun X, Mei S, Tao H, Wang G, Su L, et al. (2011) Microarray profiling for differential gene expression in PMSG-hCG stimulated preovulatory ovarian follicles of Chinese Taihu and Large White sows. BMC Genome 12: 111.
[43]
Pang KC, Stephen S, Dinger ME, Engstr?m PG, Lenhard B, et al. (2007) RNAdb 2.0--an expanded database of mammalian non-coding RNAs. Nucleic Acids Res 35: D178–182.
[44]
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, et al. (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33: e179.
[45]
Wei LQ, Yan LF, Wang T (2011) Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Genome Biol 12: R53.