Overexpression of matriptase has been reported in a variety of human cancers and is sufficient to trigger tumor formation in mice, but the importance of matriptase in breast cancer remains unclear. We analysed matriptase expression in 16 human breast cancer cell lines and in 107 primary breast tumors. The data revealed considerable diversity in the expression level of this protein indicating that the significance of matriptase may vary from case to case. Matriptase protein expression was correlated with HER2 expression and highest expression was seen in HER2-positive cell lines, indicating a potential role in this subgroup. Stable overexpression of matriptase in two breast cancer cell lines had different consequences. In MDA-MB-231 human breast carcinoma cells the only noted consequence of matriptase overexpression was modestly impaired growth in vivo. In contrast, overexpression of matriptase in 4T1 mouse breast carcinoma cells resulted in visible changes in morphology, actin staining and cell to cell contacts. This correlated with downregulation of the cell-cell adhesion molecule E-cadherin. These results suggest that the functions of matriptase in breast cancer are likely to be variable and cell context dependent.
References
[1]
Bugge TH, Antalis TM, Wu Q (2009) Type II transmembrane serine proteases. J Biol Chem 284: 23177–23181.
[2]
List K, Bugge TH, Szabo R (2006) Matriptase: potent proteolysis on the cell surface. Mol Med 12: 1–7.
[3]
Uhland K (2006) Matriptase and its putative role in cancer. Cell Mol Life Sci 63: 2968–2978.
[4]
Lin CY, Tseng IC, Chou FP, Su SF, Chen YW, et al. (2008) Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front Biosci 13: 621–635.
[5]
Tseng IC, Xu H, Chou FP, Li G, Vazzano AP, et al. (2010) Matriptase activation, an early cellular response to acidosis. J Biol Chem 285: 3261–3270.
[6]
List K, Haudenschild CC, Szabo R, Chen W, Wahl SM, et al. (2002) Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene 21: 3765–3779.
[7]
List K (2009) Matriptase: a culprit in cancer? Future Oncol 5: 97–104.
[8]
Bhatt AS, Erdjument-Bromage H, Tempst P, Craik CS, Moasser MM (2005) Adhesion signaling by a novel mitotic substrate of src kinases. Oncogene 24: 5333–5343.
[9]
Clark EB, Jovov B, Rooj AK, Fuller CM, Benos DJ (2010) Proteolytic cleavage of human acid-sensing ion channel 1 by the serine protease matriptase. J Biol Chem 285: 27130–27143.
[10]
Ustach CV, Huang W, Conley-LaComb MK, Lin CY, Che M, et al. (2010) A novel signaling axis of matriptase/PDGF-D/ss-PDGFR in human prostate cancer. Cancer Res 70: 9631–9640.
[11]
Lee SL, Dickson RB, Lin CY (2000) Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem 275: 36720–36725.
[12]
Milner JM, Patel A, Davidson RK, Swingler TE, Desilets A, et al. (2010) Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. Arthritis Rheum 62: 1955–1966.
[13]
List K, Szabo R, Molinolo A, Sriuranpong V, Redeye V, et al. (2005) Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation. Genes Dev 19: 1934–1950.
[14]
Webb SL, Sanders AJ, Mason MD, Jiang WG (2011) Type II transmembrane serine protease (TTSP) deregulation in cancer. Front Biosci 16: 539–552.
[15]
Galkin AV, Mullen L, Fox WD, Brown J, Duncan D, et al. (2004) CVS-3983, a selective matriptase inhibitor, suppresses the growth of androgen independent prostate tumor xenografts. Prostate 61: 228–235.
[16]
Li P, Jiang S, Lee SL, Lin CY, Johnson MD, et al. (2007) Design and synthesis of novel and potent inhibitors of the type II transmembrane serine protease, matriptase, based upon the sunflower trypsin inhibitor-1. J Med Chem 50: 5976–5983.
[17]
Farady CJ, Sun J, Darragh MR, Miller SM, Craik CS (2007) The mechanism of inhibition of antibody-based inhibitors of membrane-type serine protease 1 (MT-SP1). J Mol Biol 369: 1041–1051.
[18]
Napp J, Dullin C, Muller F, Uhland K, Petri JB, et al. (2010) Time-domain in vivo near infrared fluorescence imaging for evaluation of matriptase as a potential target for the development of novel, inhibitor-based tumor therapies. Int J Cancer 127: 1958–1974.
[19]
Darragh MR, Schneider EL, Lou J, Phojanakong PJ, Farady CJ, et al. (2010) Tumor detection by imaging proteolytic activity. Cancer Res 70: 1505–1512.
[20]
Shi YE, Torri J, Yieh L, Wellstein A, Lippman ME, et al. (1993) Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res 53: 1409–1415.
[21]
Voshol H, Ehrat M, Traenkle J, Bertrand E, van Oostrum J (2009) Antibody-based proteomics: analysis of signaling networks using reverse protein arrays. Febs J 276: 6871–6879.
[22]
Soule HD, Maloney TM, Wolman SR, Peterson WD , Brenz R, et al. (1990) Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. Cancer Res 50: 6075–6086.
[23]
Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, et al. (2006) A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10: 515–527.
[24]
Dai M, Wang P, Boyd AD, Kostov G, Athey B, et al. (2005) Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. Nucleic Acids Res 33: e175.
[25]
Cailleau R, Olive M, Cruciger QV (1978) Long-term human breast carcinoma cell lines of metastatic origin: preliminary characterization. In Vitro 14: 911–915.
[26]
Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52: 1399–1405.
[27]
Blick T, Widodo E, Hugo H, Waltham M, Lenburg ME, et al. (2008) Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 25: 629–642.
[28]
Jin X, Hirosaki T, Lin CY, Dickson RB, Higashi S, et al. (2005) Production of soluble matriptase by human cancer cell lines and cell surface activation of its zymogen by trypsin. J Cell Biochem 95: 632–647.
[29]
Brunton VG, Frame MC (2008) Src and focal adhesion kinase as therapeutic targets in cancer. Curr Opin Pharmacol 8: 427–432.
[30]
Micalizzi DS, Farabaugh SM, Ford HL (2010) Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J Mammary Gland Biol Neoplasia 15: 117–134.
[31]
Heuberger J, Birchmeier W (2010) Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb Perspect Biol 2: a002915.
[32]
Jin X, Yagi M, Akiyama N, Hirosaki T, Higashi S, et al. (2006) Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci 97: 1327–1334.
[33]
Kauppinen JM, Kosma VM, Soini Y, Sironen R, Nissinen M, et al. (2010) ST14 gene variant and decreased matriptase protein expression predict poor breast cancer survival. Cancer Epidemiol Biomarkers Prev 19: 2133–2142.
[34]
Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, et al. (2003) Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role for Met, matriptase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. Cancer Res 63: 1101–1105.
[35]
Parr C, Watkins G, Mansel RE, Jiang WG (2004) The hepatocyte growth factor regulatory factors in human breast cancer. Clin Cancer Res 10: 202–211.
[36]
Tsai WC, Chu CH, Yu CP, Sheu LF, Chen A, et al. (2008) Matriptase and survivin expression associated with tumor progression and malignant potential in breast cancer of Chinese women: tissue microarray analysis of immunostaining scores with clinicopathological parameters. Dis Markers 24: 89–99.
[37]
Welm AL, Sneddon JB, Taylor C, Nuyten DS, van de Vijver MJ, et al. (2007) The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans. Proc Natl Acad Sci U S A 104: 7570–7575.
[38]
Benaud CM, Oberst M, Dickson RB, Lin CY (2002) Deregulated activation of matriptase in breast cancer cells. Clin Exp Metastasis 19: 639–649.
[39]
Kiyomiya K, Lee MS, Tseng IC, Zuo H, Barndt RJ, et al. (2006) Matriptase activation and shedding with HAI-1 is induced by steroid sex hormones in human prostate cancer cells, but not in breast cancer cells. Am J Physiol Cell Physiol 291: C40–49.
[40]
Benaud C, Oberst M, Hobson JP, Spiegel S, Dickson RB, et al. (2002) Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase. J Biol Chem 277: 10539–10546.
[41]
Wang Y, Rathinam R, Walch A, Alahari SK (2009) ST14 (suppression of tumorigenicity 14) gene is a target for miR-27b, and the inhibitory effect of ST14 on cell growth is independent of miR-27b regulation. J Biol Chem 284: 23094–23106.
[42]
Wu SR, Cheng TS, Chen WC, Shyu HY, Ko CJ, et al. (2010) Matriptase is involved in ErbB-2-induced prostate cancer cell invasion. Am J Pathol 177: 3145–3158.
[43]
Szabo R, Rasmussen AL, Moyer AB, Kosa P, Schafer JM, et al. (2011) c-Met-induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene 30: 2003–2016.
[44]
Lee HS, Kim C, Kim SB, Kim MG, Park D (2010) Epithin, a target of transforming growth factor-beta signaling, mediates epithelial-mesenchymal transition. Biochem Biophys Res Commun 395: 553–559.
[45]
Cheng H, Fukushima T, Takahashi N, Tanaka H, Kataoka H (2009) Hepatocyte growth factor activator inhibitor type 1 regulates epithelial to mesenchymal transition through membrane-bound serine proteinases. Cancer Res 69: 1828–1835.
[46]
Kim C, Lee HS, Lee D, Lee SD, Cho EG, et al. (2011) Epithin/PRSS14 proteolytically regulates angiopoietin receptor Tie2 during transendothelial migration. Blood 117: 1415–1424.
[47]
Faratian D, Goltsov A, Lebedeva G, Sorokin A, Moodie S, et al. (2009) Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to trastuzumab. Cancer Res 69: 6713–6720.
[48]
Welman A, Barraclough J, Dive C (2006) Generation of cells expressing improved doxycycline-regulated reverse transcriptional transactivator rtTA2S-M2. Nat Protoc 1: 803–811.
[49]
Welman A, Serrels A, Brunton VG, Ditzel M, Frame MC (2010) Two-color photoactivatable probe for selective tracking of proteins and cells. J Biol Chem 285: 11607–11616.
[50]
Serrels B, Sandilands E, Serrels A, Baillie G, Houslay MD, et al. (2010) A complex between FAK, RACK1, and PDE4D5 controls spreading initiation and cancer cell polarity. Curr Biol 20: 1086–1092.