全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Texture Classification Using the Belief Net of a Segmentation Tree

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study presents a statistical approach to texture classification from a single image obtained under unknownviewpoint and illumination. Unlike in prior work, in which texture primitives (textons) are defined in a filter-responsespace and texture classes modeled by frequency histograms of these textons, we seek to extract and model geometric and photometric properties of image regions defining the texture. To this end, texture images are first segmented bya multiscale segmentation algorithm and a universal set of texture primitives is specified over all texture classes in the domain of region geometric and photometric properties. Then, for each class, a Tree-Structured Belief Network (TSBN) is learned, where nodes represent the corresponding image regions and edges, their statistical dependecies. A given unknown texture is classified with respect to themaximum posterior distribution of the TSBN. Experimental results on the benchmark CUReT database demonstrate that our approach outperforms the state-of-the-artmethods.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133