全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Constrained Nonlinear Neural Model Based Predictive Control Using Genetic Algorithms

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nonlinear Model Based Predictive Control (MBPC) is one of the most powerful techniques in process control, however, two main problems need to be considered; obtaining a suitable nonlinear model and using an efficient optimization procedure. In this study, a neural network is used as a non-linear prediction model of the plant. The optimization routine is based on Genetic Algorithms (GAs). First a neural model of the non-linear system is derived from input-output data. Next, the neural model is used in an MBPC structure where the critical element is the constrained optimization routine which is no convex and thus difficult to solve. A genetic algorithm based approach is proposed to deal with this problem. The efficiency of this approach had been demonstrated with simulation examples.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133