The impact of synthetic amyloid β (1–42) (Aβ1–42) oligomers on biophysical properties of voltage-gated potassium channels Kv 1.3 and lipid bilayer membranes (BLMs) was quantified for protocols using hexafluoroisopropanol (HFIP) or sodium hydroxide (NaOH) as solvents prior to initiating the oligomer formation. Regardless of the solvent used Aβ1–42 samples contained oligomers that reacted with the conformation-specific antibodies A11 and OC and had similar size distributions as determined by dynamic light scattering. Patch-clamp recordings of the potassium currents showed that synthetic Aβ1–42 oligomers accelerate the activation and inactivation kinetics of Kv 1.3 current with no significant effect on current amplitude. In contrast to oligomeric samples, freshly prepared, presumably monomeric, Aβ1–42 solutions had no effect on Kv 1.3 channel properties. Aβ1–42 oligomers had no effect on the steady-state current (at ?80 mV) recorded from Kv 1.3-expressing cells but increased the conductance of artificial BLMs in a dose-dependent fashion. Formation of amyloid channels, however, was not observed due to conditions of the experiments. To exclude the effects of HFIP (used to dissolve lyophilized Aβ1–42 peptide), and trifluoroacetic acid (TFA) (used during Aβ1–42 synthesis), we determined concentrations of these fluorinated compounds in the stock Aβ1–42 solutions by 19F NMR. After extensive evaporation, the concentration of HFIP in the 100× stock Aβ1–42 solutions was ~1.7 μM. The concentration of residual TFA in the 70× stock Aβ1–42 solutions was ~20 μM. Even at the stock concentrations neither HFIP nor TFA alone had any effect on potassium currents or BLMs. The Aβ1–42 oligomers prepared with HFIP as solvent, however, were more potent in the electrophysiological tests, suggesting that fluorinated compounds, such as HFIP or structurally-related inhalational anesthetics, may affect Aβ1–42 aggregation and potentially enhance ability of oligomers to modulate voltage-gated ion channels and biological membrane properties.
References
[1]
Bertram L, Lill CM, Tanzi RE (2010) The Genetics of Alzheimer Disease: Back to the Future. Neuron 68: 270–281.
[2]
Chouliaras L, Rutten BPF, Kenis G, Peerbooms O, Visser PJ, et al. (2010) Epigenetic regulation in the pathophysiology of Alzheimer's disease. Prog Neurobiol 90: 498–510.
[3]
Esteban JA (2004) Living with the enemy: a physiological role for the [beta]-amyloid peptide. Trends Neurosci 27: 1–3.
[4]
Parihar MS, Brewer GJ (2010) Amyloid-? as a modulator of synaptic plasticity. J Alzheimers Dis 22: 741–763.
[5]
Ramsden M, Henderson Z, Pearson HA (2002) Modulation of Ca2+ channel currents in primary cultures of rat cortical neurones by amyloid [beta] protein (1–40) is dependent on solubility status. Brain Res 956: 254–261.
[6]
Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, et al. (2010) The Alzheimer's Disease-Associated Amyloid ?-Protein Is an Antimicrobial Peptide. PLoS ONE 5: e9505.
[7]
Kayed R, Head E, Sarsoza F, Saing T, Cotman CW, et al. (2007) Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol Neurodegener 2: 18.
[8]
Tomic JL, Pensalfini A, Head E, Glabe CG (2009) Soluble fibrillar oligomer levels are elevated in Alzheimer's disease brain and correlate with cognitive dysfunction. Neurobiol Dis 35: 352–358.
[9]
Kokubo H, Kayed R, Glabe CG, Yamaguchi H (2005) Soluble A[beta] oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimer's disease brain. Brain Res 1031: 222–228.
[10]
Deshpande A, Mina E, Glabe C, Busciglio J (2006) Different Conformations of Amyloid beta Induce Neurotoxicity by Distinct Mechanisms in Human Cortical Neurons. J Neurosci 26: 6011–6018.
[11]
Yip CM, McLaurin J (2001) Amyloid-[beta] Peptide Assembly: A Critical Step in Fibrillogenesis and Membrane Disruption. Biophys J 80: 1359–1371.
[12]
Valincius G, Heinrich F, Budvytyte R, Vanderah DJ, McGillivray DJ, et al. (2008) Soluble Amyloid [beta]-Oligomers Affect Dielectric Membrane Properties by Bilayer Insertion and Domain Formation: Implications for Cell Toxicity. Biophys J 95: 4845–4861.
[13]
Stefani M (2010) Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. FEBS J 277: 4602–4613.
[14]
Arispe N, Pollard HB, Rojas E (1993) Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1–40)] in bilayer membranes. Proc Natl Acad Sci USA 90: 10573–10577.
[15]
Kawahara M, Kuroda Y (2000) Molecular mechanism of neurodegeneration induced by Alzheimer's [beta]-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res Bull 53: 389–397.
[16]
Good TA, Smith DO, Murphy RM (1996) Beta-amyloid peptide blocks the fast-inactivating K+ current in rat hippocampal neurons. Biophys J 70: 296–304.
[17]
MacManus A, Ramsden M, Murray M, Henderson Z, Pearson HA, et al. (2000) Enhancement of (45)Ca(2+) influx and voltage-dependent Ca(2+) channel activity by beta-amyloid-(1–40) in rat cortical synaptosomes and cultured cortical neurons. Modulation by the proinflammatory cytokine interleukin-1beta. J Biol Chem 275: 4713–4718.
[18]
Ramsden M, Plant LD, Webster NJ, Vaughan PF, Henderson Z, et al. (2001) Differential effects of unaggregated and aggregated amyloid beta protein (1–40) on K(+) channel currents in primary cultures of rat cerebellar granule and cortical neurones. J Neurochem 79: 699–712.
[19]
Ye CP, Selkoe DJ, Hartley DM (2003) Protofibrils of amyloid beta-protein inhibit specific K+ currents in neocortical cultures. Neurobiol Dis 13: 177–190.
[20]
Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, et al. (2008) Amyloid beta oligomers (A beta(1–42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci 28: 788–797.
[21]
Wang H-Y, Lee DHS, Davis CB, Shank RP (2000) Amyloid Peptide Aβ1–42 Binds Selectively and with Picomolar Affinity to á7 Nicotinic Acetylcholine Receptors. J Neurochem 75: 1155–1161.
[22]
Wang H-Y, Stucky A, Liu J, Shen C, Trocme-Thibierge C, et al. (2009) Dissociating a-Amyloid from á7 Nicotinic Acetylcholine Receptor by a Novel Therapeutic Agent, S 24795, Normalizes á7 Nicotinic Acetylcholine and NMDA Receptor Function in Alzheimer's Disease Brain. J Neurosci 29: 10961–10973.
[23]
Alberdi E, Sánchez-Gómez MV, Cavaliere F, Pérez-Samartín A, Zugaza JL, et al. (2010) Amyloid [beta] oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47: 264–272.
[24]
Decker H, Jurgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, et al. (2010) N-Methyl-d-aspartate receptors are required for synaptic targeting of Alzheimer's toxic amyloid-a peptide oligomers. J Neurochem 115: 1520–1529.
[25]
Cizas P, Budvytyte R, Morkuniene R, Moldovan R, Broccio M, et al. (2010) Size-dependent neurotoxicity of beta-amyloid oligomers. Arch Biochem Biophys 496: 84–92.
[26]
Lesne S, Koh MT, Kotilinek L, Kayed R, Glabe CG, et al. (2006) A specific amyloid-[beta] protein assembly in the brain impairs memory. Nature 440: 352–357.
[27]
Kayed R, Sokolov Y, Edmonds B, McIntire TM, Milton SC, et al. (2004) Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases. J Biol Chem 279: 46363–46366.
[28]
Sokolov Y, Kozak JA, Kayed R, Chanturiya A, Glabe C, et al. (2006) Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. J Gen Physiol 128: 637–647.
[29]
Capone R, Quiroz FG, Prangkio P, Saluja I, Sauer AM, et al. (2009) Amyloid-beta-induced ion flux in artificial lipid bilayers and neuronal cells: resolving a controversy. Neurotox Res 16: 1–13.
[30]
Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, et al. (2003) Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science 300: 486–489.
[31]
Kayed R, Pensalfini A, Margol L, Sokolov Y, Sarsoza F, et al. (2009) Annular protofibrils are a structurally and functionally distinct type of amyloid oligomer. J Biol Chem 284: 4230–4237.
[32]
Sarsoza F, Saing T, Kayed R, Dahlin R, Dick M, et al. (2009) A fibril-specific, conformation-dependent antibody recognizes a subset of Abeta plaques in Alzheimer disease, Down syndrome and Tg2576 transgenic mouse brain. Acta Neuropathol 118: 505–517.
[33]
Han J, Kim N, Kim E (2001) Trifluoroacetic Acid Activates ATP-Sensitive K+ Channels in Rabbit Ventricular Myocytes. Biochem Biophys Res Commun 285: 1136–1142.
[34]
Wu JW, Breydo L, Isas JM, Lee J, Kuznetsov YG, et al. (2010) Fibrillar Oligomers Nucleate the Oligomerization of Monomeric Amyloid ?2 but Do Not Seed Fibril Formation. J Biol Chem 285: 6071–6079.
[35]
Somodi S, Varga Z, Hajdu P, Starkus JG, Levy DI, et al. (2004) pH-dependent modulation of Kv1.3 inactivation: role of His399. American Journal of Physiology – Cell Physiology 287: C1067–C1076.
[36]
Cizas P, Budvytyte R, Morkuniene R, Moldovan R, Broccio M, et al. (2010) Size-dependent neurotoxicity of [beta]-amyloid oligomers. Archives of Biochemistry and Biophysics 496: 84–92.
[37]
Bobich JA, Zheng Q, Campbell A (2004) Incubation of nerve endings with a physiological concentration of Abeta1–42 activates CaV2.2(N-Type)-voltage operated calcium channels and acutely increases glutamate and noradrenaline release. J Alzheimers Dis 6: 243–255.
[38]
Chen C (2005) beta-Amyloid increases dendritic Ca2+ influx by inhibiting the A-type K+ current in hippocampal CA1 pyramidal neurons. Biochem Biophys Res Commun 338: 1913–1919.
[39]
Pannaccione A, Secondo A, Scorziello A, Cali G, Taglialatela M, et al. (2005) Nuclear factor-kappaB activation by reactive oxygen species mediates voltage-gated K+ current enhancement by neurotoxic beta-amyloid peptides in nerve growth factor-differentiated PC-12 cells and hippocampal neurones. J Neurochem 94: 572–586.
[40]
Beckh S, Pongs O (1990) Members of the RCK potassium channel family are differentially expressed in the rat nervous system. EMBO J 9: 777–782.
[41]
Kues WA, Wunder F (1992) Heterogeneous Expression Patterns of Mammalian Potassium Channel Genes in Developing and Adult Rat Brain. Eur J Neurosci 4: 1296–1308.
[42]
Veh RW, Lichtinghagen R, Sewing S, Wunder F, Grumbach IM, et al. (1995) Immunohistochemical localization of five members of the Kv1 channel subunits: contrasting subcellular locations and neuron-specific co-localizations in rat brain. Eur J Neurosci 7: 2189–2205.
[43]
Ohno-Shosaku T, Kim I, Sawada S, Yamamoto C (1996) Presence of the voltage-gated potassium channels sensitive to charybdotoxin in inhibitory presynaptic terminals of cultured rat hippocampal neurons. Neurosci Lett 207: 195–198.
[44]
Koch RO, Wanner SG, Koschak A, Hanner M, Schwarzer C, et al. (1997) Complex Subunit Assembly of Neuronal Voltage-gated K+Channels. J Biol Chem 272: 27577–27581.
[45]
Fadool DA, Levitan IB (1998) Modulation of Olfactory Bulb Neuron Potassium Current by Tyrosine Phosphorylation. J Neurosci 18: 6126–6137.
[46]
Fadool DA (2004) Kv1.3 channel gene-targeted deletion produces ‘Super-Smeller Mice’ with altered glomeruli, interacting scaffolding proteins, and biophysics. Neuron 41: 389–404.
[47]
Kupper J, Prinz A, Fromherz P (2002) Recombinant Kv1.3 potassium channels stabilize tonic firing of cultured rat hippocampal neurons. Pflügers Arch 443: 541–547.
[48]
Deshpande A, Kawai H, Metherate R, Glabe CG, Busciglio J (2009) A Role for Synaptic Zinc in Activity-Dependent A[beta] Oligomer Formation and Accumulation at Excitatory Synapses. J Neurosci 29: 4004–4015.
[49]
Kaczmarek LK (2006) Non-conducting functions of voltage-gated ion channels. Nat Rev Neurosci 7: 761–771.
[50]
Holmes T, Fadool D, Levitan I (1996) Tyrosine phosphorylation of the Kv1.3 potassium channel. J Neurosci 16: 1581–1590.
[51]
Colley BS, Biju KC, Visegrady A, Campbell S, Fadool DA (2007) Neurotrophin B receptor kinase increases Kv subfamily member 1.3 (Kv1.3) ion channel half-life and surface expression. Neuroscience 144: 531–546.
[52]
Artym VV, Petty HR (2002) Molecular proximity of Kv1.3 voltage gated potassium channels and [beta]1-integrins on the plasma membrane of melanoma cells: effects of cell adherence and channel blockers. J Gen Physiol 120: 29–37.
[53]
Uhász GJ, Barkóczi B, Vass G, Datki Z, Hunya A, et al. (2010) Fibrillar Abeta (1–42) enhances NMDA receptor sensitivity via the integrin signaling pathway. J Alzheimers Dis 19: 1055–1067.
[54]
Bi X, Gall CM, Zhou J, Lynch G (2002) Uptake and pathogenic effects of amyloid beta peptide 1–42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists. Neuroscience 112: 827–840.
[55]
Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S (2008) New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 59: 201–220.
[56]
Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE (2003) A Cell Surface Receptor Complex for Fibrillar beta -Amyloid Mediates Microglial Activation. J Neurosci 23: 2665–2674.
[57]
Jeon YJ, Won HY, Moon MY, Choi WH, Chang CH, et al. (2008) Interaction of microglia and amyloid-beta through beta2-integrin is regulated by RhoA. Neuroreport 19: 1661–1665.
[58]
Chung S, Lee J, Joe E-H, Uhm D-Y (2001) [beta]-amyloid peptide induces the expression of voltage dependent outward rectifying K+ channels in rat microglia. Neurosci Lett 300: 67–70.
[59]
Fordyce CB, Jagasia R, Zhu X, Schlichter LC (2005) Microglia Kv1. 3 channels contribute to their ability to kill neurons. J Neurosci 25: 7139–7149.
[60]
Liebau S, Propper C, Bockers T, Lehmann-Horn F, Storch A, et al. (2006) Selective blockage of Kv1.3 and Kv3.1 channels increases neural progenitor cell proliferation. J Neurochem 99: 426–437.
[61]
Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, et al. (2004) Increased hippocampal neurogenesis in Alzheimer's disease. Proc Natl Acad Sci USA 101: 343–347.
[62]
Ziabreva I, Perry E, Perry R, Minger SL, Ekonomou A, et al. (2006) Altered neurogenesis in Alzheimer's disease. J Psychosom Res 61: 311–316.
[63]
Li B, Yamamori H, Tatebayashi Y, Shafit-Zagardo B, Tanimukai H, et al. (2008) Failure of Neuronal Maturation in Alzheimer Disease Dentate Gyrus. J Neuropathol Exp Neurol 67: 78–84.
[64]
Cherubini A, Spoletini I, Péran P, Luccichenti G, Di Paola M, et al. (2010) A multimodal MRI investigation of the subventricular zone in mild cognitive impairment and Alzheimer's disease patients. Neurosci Lett 469: 214–218.
[65]
Crews L, Adame A, Patrick C, DeLaney A, Pham E, et al. (2010) Increased BMP6 Levels in the Brains of Alzheimer's Disease Patients and APP Transgenic Mice Are Accompanied by Impaired Neurogenesis. J Neurosci 30: 12252–12262.
[66]
Lopez-Toledano MA, Ali Faghihi M, Patel NS, Wahlestedt C (2010) Adult neurogenesis: a potential tool for early diagnosis in Alzheimer's disease? J Alzheimers Dis 20: 395–408.
[67]
Haughey NJ, Nath A, Chan SL, Borchard AC, Rao MS, et al. (2002) Disruption of neurogenesis by amyloid β-peptide, and perturbed neural progenitor cell homeostasis, in models of Alzheimer's disease. J Neurochem 83: 1509–1524.
[68]
Taniuchi N, Niidome T, Goto Y, Akaike A, Kihara T, et al. (2007) Decreased proliferation of hippocampal progenitor cells in APPswe/PS1dE9 transgenic mice. Neuroreport 18: 1801–1805.
[69]
Rodríguez JJ, Jones VC, Tabuchi M, Allan SM, Knight EM, et al. (2008) Impaired adult neurogenesis in the dentate gyrus of a triple transgenic mouse model of Alzheimer's disease. PLoS One 3: 1–7.
[70]
Rodriguez JJ, Jones VC, Verkhratsky A (2009) Impaired cell proliferation in the subventricular zone in an Alzheimer's disease model. NeuroReport 20: 907–912.
[71]
H??k F, V?r?s J, Rodahl M, Kurrat R, B?ni P, et al. (2002) A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation. Colloid Surface B 24: 155–170.
[72]
Levitt M, Gerstein M, Huang E, Subbiah S, Tsai J (1997) Protein folding: the endgame. Annu Rev Biochem 66: 549–579.
[73]
Eckenhoff RG, Johansson JS, Wei H, Carnini A, Kang B, et al. (2004) Inhaled Anesthetic Enhancement of Amyloid-a Oligomerization and Cytotoxicity. Anesthesiology 3: 703–709.
[74]
Carnini A, Lear JD, Eckenhoff RG (2007) Inhaled anesthetic modulation of amyloid beta(1–40) assembly and growth. Curr Alzheimer Res 4: 233–241.
[75]
Mandal PK, Fodale V (2009) Isoflurane and desflurane at clinically relevant concentrations induce amyloid [beta]-peptide oligomerization: An NMR study. Biochem Biophys Res Commun 379: 716–720.
[76]
Seidler NW, Eklund JD (2009) Interfacial effects on the conformation of amyloid-beta. peptide. Protein Pept Lett. 16. : 182–188.
[77]
Bittner E, Yue Y, Xie Z (2011) Brief review: Anesthetic neurotoxicity in the elderly, cognitive dysfunction and Alzheimer's disease. Can J Anesth 58: 216–223.
[78]
Xie Z, Tanzi RE (2006) Alzheimer's disease and post-operative cognitive dysfunction. Exp Gerontol 41: 346–359.
Baranov D, Bickler PE, Crosby GJ, Culley DJ, Eckenhoff MF, et al. (2009) Consensus Statement: First International Workshop on Anesthetics and Alzheimer's Disease. Anesth Analg 108: 1627–1630.
[81]
Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, et al. (1992) Assembly and aggregation properties of synthetic Alzheimer's A4/beta amyloid peptide analogs. J Biol Chem 267: 546–554.
[82]
Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, et al. (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 45: 1227–1234.
[83]
Mamikonyan G, Necula M, Mkrtichyan M, Ghochikyan A, Petrushina I, et al. (2007) Anti- AaAntibody Binds to Different a-Amyloid Species, Inhibits Fibril Formation, and Disaggregates Preformed Fibrils but Not the Most Toxic Oligomers. J Biol Chem 282: 22376–22386.