全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

In Vivo Inhibitory Effect on the Biofilm Formation of Candida albicans by Liverwort Derived Riccardin D

DOI: 10.1371/journal.pone.0035543

Full-Text   Cite this paper   Add to My Lib

Abstract:

Riccardin D, a macrocyclic bisbibenzyl isolated from Chinese liverwort Dumortiera hirsute, has been proved to have inhibitory effect on biofilms formation of Candida albicans in in vitro study. Our present study aims to investigate the in vivo effect and mechanisms of riccardin D against C. albicans biofilms when used alone or in combination with clinical using antifungal agent fluconazole. XTT reduction assay revealed riccardin D had both prophylactic and therapeutic effect against C. albicans biofilms formation in a dose-dependent manner when using a central venous catheter related infective animal model. Scanning electron microscope and laser confocal scanning microscope showed that the morphology of biofilms was altered remarkably after riccardin D treatment, especially hypha growth inhibition. To uncover the underlying molecular mechanisms, quantitative real-time RT-PCR was performed to observe the variation of related genes. The downregulation of hypha-specific genes such as ALS1, ALS3, ECE1, EFG1, HWP1 and CDC35 following riccardin D treatment suggested riccardin D inhibited the Ras-cAMP-Efg pathway to retard the hypha formation, then leading to the defect of biofilms maturation. Moreover, riccardin D displayed an increased antifungal activity when administered in combination with fluconazole. Our study provides a potential clinical application to eliminate the biofilms of relevant pathogens.

References

[1]  Donlan RM (2001) Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33: 1387–1392.
[2]  Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15: 167–193.
[3]  Douglas LJ (2002) Medical importance of biofilms in Candida infections. Rev Iberoam Micol 19: 139–143.
[4]  Edmond MB, Wallace SE, McClish DK, Pfaller MA, Jones RN, et al. (1999) Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29: 239–244.
[5]  Fraser VJ, Jones M, Dunkel J, Storfer S, Medoff G, et al. (1992) Candidemia in a tertiary care hospital: epidemiology, risk factors, and predictors of mortality. Clin Infect Dis 15: 414–421.
[6]  Anaissie EJ, Rex JH, Uzun O, Vartivarian S (1998) Predictors of adverse outcome in cancer patients with candidemia. Am J Med 104: 238–245.
[7]  Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL (2002) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49: 973–980.
[8]  Rex JH, Bennett JE, Sugar AM, Pappas PG, van der Horst CM, et al. (1994) A randomized trial comparing fluconazole with amphotericin B for the treatment of candidemia in patients without neutropenia. N Engl J Med 331: 1325–1330.
[9]  Richards MJ, Edwards JR, Culver DH, Gaynes RP (2000) Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol 21: 510–515.
[10]  Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE, et al. (2003) Infectious diseases society of America. Guidelines for treatment of candidiasis. Clin Infect Dis 38: 161–189.
[11]  Mermel LA, Farr BM, Sherertz RJ, Raad II, O'Grady N, et al. (2001) Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis 32: 1249–1272.
[12]  Nucci M, Anaissie E (2002) Should vascular catheters be removed from all patients with candidemia? An evidence-based review. Clin Infect Dis 34: 591–599.
[13]  Baillie GS, Douglas LJ (2000) Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal drugs. J Antimicrob Chemother 46: 397–403.
[14]  Mah TF, O'Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9: 34–39.
[15]  Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA (2003) Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71: 4333–4340.
[16]  Tobudic S, Kratzer C, Lassnigg A, Presterl E (2011) Antifungal susceptibility of Candida albicans in biofilms. Mycoses 28: doi:10.1111/j.1439-0507.2011.02076.x.
[17]  Cheng AX, Sun LM, Wu XZ, Lou HX (2009) The Inhibitory Effect of a Macrocyclic Bisbibenzyl Riccardin D on the Biofilms of Candida albicans. Biol Pharm Bull 32: 1417–1421.
[18]  Lu ZQ, Fan PH, Ji M, Lou HX (2006) Terpenoids and bisbibenzyls from Chinese liverworts Conocephalum conicum and Dumortiera hirsuta. J Asian Nat Prod Res 8: 187–192.
[19]  Wu XZ, Chang WQ, Cheng AX, Sun LM, Lou HX (2010) Plagiochin E, an antifungal active macrocyclic bis(bibenzyl), induced apoptosis in Candida albicans through a metacaspase-dependent apoptotic pathway. Biochim Biophys Acta 1800: 439–447.
[20]  Wu XZ, Cheng AX, Sun LM, Sun SJ, Lou HX (2009) Plagiochin E, an antifungal bis(bibenzyl), exerts its antifungal activity through mitochondrial dysfunction-induced reactive oxygen species accumulation in Candida albicans. Biochim Biophys Acta 1790: 770–777.
[21]  Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, et al. (2004) Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun 72: 6023–6031.
[22]  Schinabeck MK, Hossain MA, Chandra J, Mukherjee PK, Mohamed S, et al. (2004) Rabbit model of Candida albicans biofilm infection: liposomal Amphotericin B antifungal lock therapy. Antimicrob. Agents Chemother 48: 1727–1732.
[23]  Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL (2004) Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol 68: 5459–5463.
[24]  Jones KH, Senft JA (1985) An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J Histochem Cytochem 33: 77–79.
[25]  Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432: 829–837.
[26]  Keseru GM, Nógrádi M (1995) The biological activity of cyclic bis(bibenzyls): a rational approach. Bioorg Med Chem 3: 1511–1517.
[27]  Iwai Y, Murakami K, Gomi Y, Hashimoto T, Asakawa Y, et al. (2011) Anti-influenza activity of marchantins, macrocyclic bisbibenzyls contained in liverworts. PLoS One 6: e19825.
[28]  Xie CF, Lou HX (2009) Secondary metabolites in bryphytes: an ecological aspect. Chem Biodivers 6: 303–312.
[29]  Qu J, Xie C, Guo H, Yu W, Lou H (2007) Antifungal dibenzofuran bis(bibenzyl)s from the liverwort Asterella angusta. Phytochemistry 68: 1767–1774.
[30]  Zhang L, Chang W, Sun B, Groh M, Speicher A, et al. (2011) Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. PLoS ONE 6: e28953.
[31]  Sun LM, Lv BB, Cheng AX, Wu XZ, Lou HX (2009) The effect of Plagiochin E alone and in combination with fluconazole on the ergosterol biosynthesis of Candida albicans. Biol Pharm Bull 32: 36–40.
[32]  Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, et al. (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183: 5385–5394.
[33]  Odds FC (1985) Morphogenesis in Candida albicans. Crit Rev Microbiol 12: 45–93.
[34]  Leberer E, Harcus D, Dignard D, Johnson L, Ushinsky S, et al. (2001) Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Molecular Microbiology 42: 673–687.
[35]  Coleman DA, Zhao X, Zhao H, Hutchins JT, Vernachio JH, et al. (2009) Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. J Microbiol Methods 78: 71–78.
[36]  Hoyer LL, Green CB, Oh SH, Zhao X (2008) Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family - a sticky pursuit. Med Mycol 46: 1–15.
[37]  Zhao X, Daniels KJ, Oh SH, Green CB, Yeater KM, et al. (2006) Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology 152: 2287–2299.
[38]  Dwivedi P, Thompson A, Xie Z, Kashleva H, Ganguly S, et al. (2011) Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS One 6: e16218.
[39]  Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, et al. (2006) Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog 2: e63.
[40]  Nobile CJ, Nett JE, Andes DR, Mitchell AP (2006) Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 5: 1604–1610.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133