全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Assessing Corpus Callosum Changes in Alzheimer's Disease: Comparison between Tract-Based Spatial Statistics and Atlas-Based Tractography

DOI: 10.1371/journal.pone.0035856

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tractography based on Diffusion Tensor Imaging (DTI) represents a valuable tool for investigating brain white matter (WM) microstructure, allowing the computation of damage-related diffusion parameters such as Fractional Anisotropy (FA) in specific WM tracts. This technique appears relevant in the study of pathologies in which brain disconnection plays a major role, such as, for instance, Alzheimer's Disease (AD). Previous DTI studies have reported inconsistent results in defining WM abnormalities in AD and in its prodromal stage (i.e., amnestic Mild Cognitive Impairment; aMCI), especially when investigating the corpus callosum (CC). A reason for these inconsistencies is the use of different processing techniques, which may strongly influence the results. The aim of the current study was to compare a novel atlas-based tractography approach, that sub-divides the CC in eight portions, with Tract-Based Spatial Statistics (TBSS) when used to detect specific patterns of CC FA in AD at different clinical stages. FA data were obtained from 76 subjects (37 with mild AD, 19 with aMCI and 20 elderly healthy controls, HC) and analyzed using both methods. Consistent results were obtained for the two methods, concerning the comparisons AD vs. HC (significantly reduced FA in the whole CC of AD patients) and AD vs. aMCI (significantly reduced FA in the frontal portions of the CC in AD patients), thus identifying a relative preservation of the frontal CC regions in aMCI patients compared to AD. Conversely, the atlas-based method but not the TBSS showed the ability to detect a selective FA change in the CC parietal, left temporal and occipital regions of aMCI patients compared to HC. This finding indicates that an analysis including a higher number of voxels (with no restriction to tract skeletons) may detect characteristic pattern of FA in the CC of patients with preclinical AD, when brain atrophy is still modest.

References

[1]  Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256(3): 183–194.
[2]  Di Paola M, Spalletta G, Caltagirone C (2010) In vivo structural neuroanatomy of corpus callosum in alzheimer's disease and mild cognitive impairment using different MRI techniques: A review. J Alzheimers Dis 20(1): 67–95.
[3]  Serra L, Cercignani M, Lenzi D, Perri R, Fadda L, et al. (2010) Grey and white matter changes at different stages of alzheimer's disease. J Alzheimers Dis 19(1): 147–159.
[4]  Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5): 527–539.
[5]  Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36(6): 893–906.
[6]  Fellgiebel A, Wille P, Muller MJ, Winterer G, Scheurich A, et al. (2004) Ultrastructural hippocampal and white matter alterations in mild cognitive impairment: A diffusion tensor imaging study. Dement Geriatr Cogn Disord 18(1): 101–108.
[7]  Head D, Buckner RL, Shimony JS, Williams LE, Akbudak E, et al. (2004) Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex 14: 410–423.
[8]  Stahl R, Dietrich O, Teipel SJ, Hampel H, Reiser MF, et al. (2007) White matter damage in alzheimer disease and mild cognitive impairment: Assessment with diffusion-tensor MR imaging and parallel imaging techniques. Radiology 243(2): 483–492.
[9]  Choi SJ, Lim KO, Monteiro I, Reisberg B (2005) Diffusion tensor imaging of frontal white matter microstructure in early Alzheimer's disease: a preliminary study. J Geriatr Psychiatry Neurol 18: 12–19.
[10]  Bozzali M, Falini A, Franceschi M, Cercignani M, Zuffi M, et al. (2002) White matter damage in Alzheimer's disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiatry 72: 742–746.
[11]  Takahashi S, Yonezawa H, Takahashi J, Kudo M, Inoue T, et al. (2002) Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 Tesla magnetic resonance imaging. Neurosci Lett 332: 45–48.
[12]  Zhang Y, Schuff N, Jahng GH, Bayne W, Mori S, et al. (2007) Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and alzheimer disease. Neurology 68(1): 13–19.
[13]  Naggara O, Oppenheim C, Rieu D, Raoux N, Rodrigo S, et al. (2006) Diffusion tensor imaging in early alzheimer's disease. Psychiatry Res 146(3): 243–249.
[14]  Duan JH, Wang HQ, Xu J, Lin X, Chen SQ, et al. (2006) White matter damage of patients with alzheimer's disease correlated with the decreased cognitive function. Surg Radiol Anat 28(2): 150–156.
[15]  Teipel SJ, Stahl R, Dietrich O, Schoenberg SO, Perneczky R, et al. (2007) Multivariate network analysis of fiber tract integrity in Alzheimer's disease. Neuroimage 34: 985–995.
[16]  Xie S, Xiao JX, Gong GL, Zang YF, Wang YH, et al. (2006) Voxel-based detection of white matter abnormalities in mild Alzheimer disease. Neurology 66: 1845–1849.
[17]  Ukmar M, Makuc E, Onor ML, Garbin G, Trevisiol M, et al. (2008) Evaluation of white matter damage in patients with alzheimer's disease and in patients with mild cognitive impairment by using diffusion tensor imaging. Radiol Med 113(6): 915–922.
[18]  Parente DB, Gasparetto EL, da Cruz LC Jr, Domingues RC, Baptista AC, et al. (2008) Potential role of diffusion tensor MRI in the differential diagnosis of mild cognitive impairment and alzheimer's disease. AJR Am J Roentgenol 190(5): 1369–1374.
[19]  Cho H, Yang DW, Shon YM, Kim BS, Kim YI, et al. (2008) Abnormal integrity of corticocortical tracts in mild cognitive impairment: A diffusion tensor imaging study. J Korean Med Sci 23(3): 477–483.
[20]  Wang L, Goldstein FC, Veledar E, Levey AI, Lah JJ, et al. (2009) Alterations in cortical thickness and white matter integrity in mild cognitive impairment measured by whole-brain cortical thickness mapping and diffusion tensor imaging. AJNR Am J Neuroradiol 30(5): 893–899.
[21]  Liu Y, Spulber G, Lehtimaki KK, Kononen M, Hallikainen I, et al. (2009) Diffusion tensor imaging and tract-based spatial statistics in alzheimer's disease and mild cognitive impairment. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2009.10.006.
[22]  Bosch B, Arenaza-Urquijo EM, Rami L, Sala-Llonch R, Junque C, et al. (2010) Multiple DTI index analysis in normal aging, amnestic MCI and AD. relationship with neuropsychological performance. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2010.02.004.
[23]  Damoiseaux JS, Smith SM, Witter MP, Sanz-Arigita EJ, Barkhof F, et al. (2009) White matter tract integrity in aging and alzheimer's disease. Hum Brain Mapp 30(4): 1051–1059.
[24]  Di Paola M, Di Iulio F, Cherubini A, Blundo C, Casini AR, et al. (2010) When, where and how corpus callosal changes in MCI and AD: a multimodal MRI study. Neurology 74(14): 1136–42.
[25]  Rogalski EJ, Murphy CM, deToledo-Morrell L, Shah RC, Moseley ME, et al. (2009) Changes in parahippocampal white matter integrity in amnestic mild cognitive impairment: A diffusion tensor imaging study. Behav Neurol 21(1): 51–61.
[26]  Chen TF, Lin CC, Chen YF, Liu HM, Hua MS, et al. (2009) Diffusion tensor changes in patients with amnesic mild cognitive impairment and various dementias. Psychiatry Res 173(1): 15–21.
[27]  Medina D, DeToledo-Morrell L, Urresta F, Gabrieli JD, Moseley M, et al. (2006) White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiol Aging 27(5): 663–672.
[28]  Chen SQ, Kang Z, Hu XQ, Hu B, Zou Y (2007) Diffusion tensor imaging of the brain in patients with alzheimer's disease and cerebrovascular lesions. J Zhejiang Univ Sci B 8(4): 242–247.
[29]  Chua TC, Wen W, Chen X, Kochan N, Slavin MJ, et al. (2009) Diffusion tensor imaging of the posterior cingulate is a useful biomarker of mild cognitive impairment. Am J Geriatr Psychiatry 17(7): 602–613.
[30]  Zhang Y, Schuff N, Du AT, Rosen HJ, Kramer JH, et al. (2009) White matter damage in frontotemporal dementia and alzheimer's disease measured by diffusion MRI. Brain 132(Pt 9): 2579–2592.
[31]  Nakata Y, Sato N, Abe O, Shikakura S, Arima K, et al. (2008) Diffusion abnormality in posterior cingulate fiber tracts in alzheimer's disease: Tract-specific analysis. Radiat Med 26(8): 466–473.
[32]  Morikawa M, Kiuchi K, Taoka T, Nagauchi K, Kichikawa K, et al. (2010) Uncinate fasciculus-correlated cognition in alzheimer's disease: A diffusion tensor imaging study by tractography. Psychogeriatrics 10(1): 15–20.
[33]  Taoka T, Morikawa M, Akashi T, Miyasaka T, Nakagawa H, et al. (2009) Fractional anisotropy–threshold dependence in tract-based diffusion tensor analysis: Evaluation of the uncinate fasciculus in alzheimer disease. AJNR Am J Neuroradiol 30(9): 1700–1703.
[34]  Pievani M, Agosta F, Pagani E, Canu E, Sala S, et al. (2010) Assessment of white matter tract damage in mild cognitive impairment and alzheimer's disease. Hum Brain Mapp 31(12): 1862–1875.
[35]  Zhuang L, Wen W, Zhu W, Trollor J, Kochan N, et al. (2010) White matter integrity in mild cognitive impairment: A tract-based spatial statistics study. Neuroimage 53(1): 16–25.
[36]  Stricker NH, Schweinsburg BC, Delano-Wood L, Wierenga CE, Bangen KJ, et al. (2009) Decreased white matter integrity in late-myelinating fiber pathways in alzheimer's disease supports retrogenesis. Neuroimage 45(1): 10–16.
[37]  Haller S, Nguyen D, Rodriguez C, Emch J, Gold G, et al. (2010) Individual prediction of cognitive decline in mild cognitive impairment using support vector machine-based analysis of diffusion tensor imaging data. J Alzheimers Dis 22(1): 315–327.
[38]  Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, et al. (2006) Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 31(4): 1487–1505.
[39]  Reich DS, Ozturk A, Calabresi PA, Mori S (2010) Automated vs. conventional tractography in multiple sclerosis: Variability and correlation with disability. Neuroimage 49(4): 3047–3056.
[40]  Bozzali M, Padovani A, Caltagirone C, Borroni B (2011) Regional grey matter loss and brain disconnection across alzheimer disease evolution. Curr Med Chem 18(16): 2452–2458.
[41]  Gili T, Cercignani M, Serra L, Perri R, Giove F, et al. (2011) Regional brain atrophy and functional disconnection across alzheimer's disease evolution. J Neurol Neurosurg Psychiatry 82(1): 58–66.
[42]  Kakeda S, Korogi Y (2010) The efficacy of a voxel-based morphometry on the analysis of imaging in schizophrenia, temporal lobe epilepsy, and alzheimer's disease/mild cognitive impairment: A review. Neuroradiology 52(8): 711–721.
[43]  Karas G, Sluimer J, Goekoop R, van der Flier W, Rombouts SA, et al. (2008) Amnestic mild cognitive impairment: Structural MR imaging findings predictive of conversion to alzheimer disease. AJNR Am J Neuroradiol 29(5): 944–949.
[44]  Vemuri P, Weigand SD, Knopman DS, Kantarci K, Boeve BF, et al. (2011) Time-to-event voxel-based techniques to assess regional atrophy associated with MCI risk of progression to AD. Neuroimage 54(2): 985–991.
[45]  Serra L, Perri R, Cercignani M, Spano B, Fadda L, et al. (2010) Are the behavioral symptoms of alzheimer's disease directly associated with neurodegeneration? J Alzheimers Dis 21(2): 627–639.
[46]  Risacher SL, Saykin AJ, West JD, Shen L, Firpi HA, et al. (2009) Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr Alzheimer Res 6(4): 347–361.
[47]  Leube DT, Weis S, Freymann K, Erb M, Jessen F, et al. (2008) Neural correlates of verbal episodic memory in patients with MCI and alzheimer's disease–a VBM study. Int J Geriatr Psychiatry 23(11): 1114–1118.
[48]  Brun A, Englund E (2002) Regional pattern of degeneration in Alzheimer's disease: neuronal loss and histopathological grading. Histopathology 41: 40–55.
[49]  Brun A, Englund E (1981) Regional pattern of degeneration in Alzheimer's disease: neuronal loss and histopathological grading. Histopathology 5: 549–564.
[50]  Fleisher AS, Houston WS, Eyler LT, Frye S, Jenkins C, et al. (2005) Identification of Alzheimer disease risk by functional magnetic resonance imaging. Arch Neurol 62(12): 1881–8.
[51]  Dickerson BC, Salat DH, Bates JF, Atiya M, Killiany RJ, et al. (2004) Medial temporal lobe function and structure in mild cognitive impairment. Ann Neurol 56(1): 27–35.
[52]  Shi F, Liu B, Zhou Y, Yu C, Jiang T (2009) Hippocampal volume and asymmetry in mild cognitive impairment and Alzheimer's disease: Meta-analyses of MRI studies. Hippocampus 19(11): 1055–64.
[53]  Cherbuin N, Réglade-Meslin C, Kumar R, Sachdev P, Anstey KJ (2010) Mild Cognitive Disorders are Associated with Different Patterns of Brain asymmetry than Normal Aging: The PATH through Life Study. Front Psychiatry 11: 1–11.
[54]  Lebel C, Caverhill-Godkewitsch S, Beaulieu C (2010) Age-related regional variations of the corpus callosum identified by diffusion tensor tractography. Neuroimage 52(1): 20–31.
[55]  Peng H, Orlichenko A, Dawe RJ, Agam G, Zhang S, et al. (2009) Development of a human brain diffusion tensor template. Neuroimage 46(4): 967–980.
[56]  Grundman M, Petersen RC, Ferris SH, Thomas RG, Aisen PS, et al. (2004) Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials. Arch Neurol 61: 59–66.
[57]  Morris JC (1993) The clinical dementia rating (CDR): Current version and scoring rules. Neurology 43(11): 2412–2414.
[58]  Magni E, Binetti G, Bianchetti A, Rozzini R, Trabucchi M (1996) Mini-mental state examination: A normative study in italian elderly population. Eur J Neurol 3(3): 198–202.
[59]  Rosen WG, Terry RD, Fuld PA, Katzman R, Peck A (1980) Pathological verification of ischemic score in differentiation of dementias. Ann Neurol 7(5): 486–488.
[60]  Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23: 56–62.
[61]  McKhann G, Drachman D, Folstein M, Katzman R, Price D, et al. (1984) Clinical diagnosis of alzheimer's disease: Report of the NINCDS-ADRDA work group under the auspices of department of health and human services task force on alzheimer's disease. Neurology 34(7): 939–944.
[62]  McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, et al. (2011) The diagnosis of dementia due to alzheimer's disease: Recommendations from the national institute on aging-alzheimer's association workgroups on diagnostic guidelines for alzheimer's disease. Alzheimers Dement 7(3): 263–269.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133