The opportunistic pathogen Pseudomonas aeruginosa is able to thrive in diverse ecological niches and to cause serious human infection. P. aeruginosa environmental strains are producing various virulence factors that are required for establishing acute infections in several host organisms; however, the P. aeruginosa phenotypic variants favour long-term persistence in the cystic fibrosis (CF) airways. Whether P. aeruginosa strains, which have adapted to the CF-niche, have lost their competitive fitness in the other environment remains to be investigated. In this paper, three P. aeruginosa clonal lineages, including early strains isolated at the onset of infection, and late strains, isolated after several years of chronic lung infection from patients with CF, were analysed in multi-host model systems of acute infection. P. aeruginosa early isolates caused lethality in the three non-mammalian hosts, namely Caenorhabditis elegans, Galleria mellonella, and Drosophila melanogaster, while late adapted clonal isolates were attenuated in acute virulence. When two different mouse genetic background strains, namely C57Bl/6NCrl and Balb/cAnNCrl, were used as acute infection models, early P. aeruginosa CF isolates were lethal, while late isolates exhibited reduced or abolished acute virulence. Severe histopathological lesions, including high leukocytes recruitment and bacterial load, were detected in the lungs of mice infected with P. aeruginosa CF early isolates, while late isolates were progressively cleared. In addition, systemic bacterial spread and invasion of epithelial cells, which were detected for P. aeruginosa CF early strains, were not observed with late strains. Our findings indicate that niche-specific selection in P. aeruginosa reduced its ability to cause acute infections across a broad range of hosts while maintaining the capacity for chronic infection in the CF host.
References
[1]
Bernd Rehm HA (2008) Pseudomonas: model organism, pathogen, cell factory. Wiley & Sons Ltd.
[2]
Lee D, Urbach JM, Wu G, Liberati NT, Feinbaum RL, et al. (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biology 7: R90.
[3]
Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, et al. (2007) Population structure of Pseudomonas aeruginosa. PNAS 104: 8101–8106.
[4]
Bragonzi A, Wiehlmann L, Klockgether J, Cramer N, Worlitzsch D, et al. (2006) Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Microbiology 152: 3261–3269.
[5]
Cigana C, Curcurù L, Leone MR, Ieranò T, Lorè NI, et al. (2009) Pseudomonas aeruginosa exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection. PLoS One 4: e8439.
[6]
Mahenthiralingam E, Campbell ME, Speert DP (1994) Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62: 596–605.
[7]
D'Argenio DA, Wu M, Hoffman LR, Kulasekara HD, Déziel E, et al. (2007) Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64: 512–533.
[8]
Hoffmann L, Kulasekara HD, Emerson J, Houston LS, Burns JL, et al. (2009) Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros 8: 66–70.
[9]
Jain M, Ramirez D, Seshadri R, Cullina JF, Powers CA, et al. (2004) Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J Clin Microbiol 42: 5229–5237.
[10]
Oliver A, Cantón R, Campo P, Baquero F, Blázquez J (2000) High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251–1254.
[11]
Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, et al. (2006) Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 30: 8487–8492.
[12]
Mowat E, Paterson S, Fothergill JL, Wright EA, Ledson MJ, et al. (2011) Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am J Respir Crit Care Med 183: 1674–1679.
[13]
Nguyen D, Singh PK (2006) Evolving stealth: genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections. Proc Natl Acad Sci U S A 30: 8305–8306.
[14]
Bragonzi A, Paroni M, Nonis A, Cramer N, Montanari S, et al. (2009) Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence. AJRCCM 180: 138–145.
[15]
Bianconi I, Milani A, Paroni M, Cigana C, Levesque RC, et al. (2011) Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting long-term airways chronic infection. Plos Pathogen 7: e1001270.
[16]
Tam M, Snipes GJ, Stevenson MM (1999) Characterization of chronic bronchopulmonary Pseudomonas aeruginosa infection in resistant and susceptible inbred mouse strains. Am J Respir Cell Mol Biol 20: 710–719.
[17]
Foster T (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3: 948–958.
[18]
Schwab U, Leigh M, Ribeiro C, Yankaskas J, Burns K, et al. (2002) Patterns of epithelial cell invasion by different species of the Burkholderia cepacia complex in well-differentiated human airway epithelia. Infect Immun 70: 4547–4555.
[19]
Bragonzi A, Worlitzsch D, Pier GB, Timpert P, Ulrich M, et al. (2005) Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model. J Infect Dis 192: 410–419.
[20]
Uehlinger S, Schwager S, Bernier SP, Riedel K, Nguyen DT, et al. (2009) Identification of specific and universal virulence factors in Burkholderia cenocepacia strains by using multiple infection hosts. Infect Immun 77: 4102–4110.
[21]
Mahajan-Miklos S, Rahme LG, Ausubel FM (2000) Elucidating the molecular mechanisms of bacterial virulence using non-mammalian hosts. Mol Microbiol 37: 981–988.
[22]
Ferrandon D, Imler JL, Hetru C, Hoffmann JA (2007) The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat Rev Immunol 11: 862–874.
[23]
Garvis S, Munder A, Ball G, de Bentzmann S, Wiehlmann L, et al. (2009) Caenorhabditis elegans semi-automated liquid screen reveals a specialized role for the chemotaxis gene cheB2 in Pseudomonas aeruginosa virulence. PLoS Pathog e1000540:
[24]
Monk A, Boundy S, Chu VH, Bettinger JC, Robles JR, et al. (2008) Analysis of the genotype and virulence of Staphylococcus epidermidis isolates from patients with infective endocarditis. Infect Immun 76: 5127–5132.
[25]
Medzhitov R, Schneider DS, Soares MP (2012) Disease tolerance as a defense strategy. Science 335: 936–941.
[26]
Engelmann I, Pujol N (2010) Innate immunity in C. elegans. Adv Exp Med Biol 708: 105–121.
[27]
Jander G, Rahme LG, Ausubel FM (2000) Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182: 3843–3845.
[28]
Morissette C, Skamene E, Gervais F (1995) Endobronchial inflammation following Pseudomonas aeruginosa infection in resistant and susceptible strains of mice. Infect Immun 63: 1718–1724.
[29]
Morissette C, Francoeur C, Darmond-Zwaig C, Gervais F (1996) Lung phagocyte bactericidal function in strains of mice resistant and susceptible to Pseudomonas aeruginosa. Infection and Immunity 64: 4984–4992.
[30]
Sapru K, Stotland PK, Stevenson MM (1999) Quantitative and qualitative differences in bronchoalveolar inflammatory cells in Pseudomonas aeruginosa-resistant and -susceptible mice. Clin Exp Immunol 115: 103–109.
[31]
Tam M, Snipes GJ, Stevenson MM (1999) Characterization of chronic bronchopulmonary Pseudomonas aeruginosa infection in resistant and susceptible inbred mouse strains. Am J Respir Cell Mol Biol 20: 710–719.
[32]
Furukawa S, Kuchma SL, O'Toole GA (2006) Keeping their options open: acute versus persistent infections. J Bacteriol 188: 1211–1217.
[33]
Read A, Graham AL, R?berg L (2008) Animal defenses against infectious agents: is damage control more important than pathogen control. PLoS Biol 6: e4.
[34]
R?berg L, Graham AL, Read AF (2009) Decomposing health: tolerance and resistance to parasites in animals. Philos Trans R Soc Lond B Biol Sci 364: 37–49.
[35]
Cigana C, Lorè NI, Bernardini ML, Bragonzi A (2011) Dampening host sensing and avoiding recognition in Pseudomonas aeruginosa pneumonia. J Biomed Biotechnol 852513:
[36]
Apidianakis Y, Rahme LG (2009) Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection. Nature Protocols 4: 1285–1293.
[37]
Bragonzi A (2010) Murine models of acute and chronic lung infection with cystic fibrosis pathogens. IJMM 300: 584–593.
[38]
Sarkar K, Fox-Talbot K, Steenbergen C, Bosch-Marcé M, Semenza GL (2009) Adenoviral transfer of HIF-1alpha enhances vascular responses to critical limb ischemia in diabetic mice. Proc Natl Acad Sci U S A 106: 18769–18774.
[39]
Egan M, Flotte T, Afione S, Solow R, Zeitlin PL, et al. (1992) Defective regulation of outwardly rectifying Cl- channels by protein kinase A corrected by insertion of CFTR. Nature 358: 581–584.
[40]
Zeitlin P, Lu L, Rhim J, Cutting G, Stetten G, et al. (1991) A cystic fibrosis bronchial epithelial cell line: immortalization by adeno-12-SV40 infection. Am J Respir Cell Mol Biol 4: 313–319.
[41]
Pirone L, Bragonzi A, Farcomeni A, Paroni M, Auriche C, et al. (2008) Burkholderia cenocepacia strains isolated from cystic fibrosis patients are apparently more invasive and more virulent than rhizosphere strains. Environ Microbiol 10: 2773–2784.