全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Expression of ABC Efflux Transporters in Placenta from Women with Insulin-Managed Diabetes

DOI: 10.1371/journal.pone.0035027

Full-Text   Cite this paper   Add to My Lib

Abstract:

Drug efflux transporters in the placenta can significantly influence the materno-fetal transfer of a diverse array of drugs and other xenobiotics. To determine if clinically important drug efflux transporter expression is altered in pregnancies complicated by gestational diabetes mellitus (GDM-I) or type 1 diabetes mellitus (T1DM-I), we compared the expression of multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein 2 (MRP2) and the breast cancer resistance protein (BCRP) via western blotting and quantitative real-time polymerase chain reaction in samples obtained from insulin-managed diabetic pregnancies to healthy term-matched controls. At the level of mRNA, we found significantly increased expression of MDR1 in the GDM-I group compared to both the T1DM-I (p<0.01) and control groups (p<0.05). Significant changes in the placental protein expression of MDR1, MRP2, and BCRP were not detected (p>0.05). Interestingly, there was a significant, positive correlation observed between plasma hemoglobin A1c levels (a retrospective marker of glycemic control) and both BCRP protein expression (r = 0.45, p<0.05) and BCRP mRNA expression (r = 0.58, p<0.01) in the insulin-managed DM groups. Collectively, the data suggest that the expression of placental efflux transporters is not altered in pregnancies complicated by diabetes when hyperglycemia is managed; however, given the relationship between BCRP expression and plasma hemoglobin A1c levels it is plausible that their expression could change in poorly managed diabetes.

References

[1]  Onkamo P, V??n?nen S, Karvonen M, Tuomilehto J (1999) Worldwide increase in incidence of Type I diabetes–the analysis of the data on published incidence trends. Diabetologia 42: 1395–1403.
[2]  World Health Organization (2011) Fact Sheet No 312: Diabetes. Available: http://www.who.int/mediacentre/factsheet?s/fs312/en [2011, March 1].
[3]  Gwilt PR, Nahhas RR, Tracewell WG (1991) The effects of diabetes mellitus on pharmacokinetics and pharmacodynamics in humans. Clinical Pharmacokinetics 20: 477–490.
[4]  Evseenko D, Paxton J, Keelan J (2006) ABC drug transporter expression and functional activity in trophoblast-like cell lines and differentiating primary trophoblast. Am J Physiol Regul Integr Comp Physiol 290: R1357–1365.
[5]  St-Pierre M, Serrano M, Macias R, Dubs U, Hoechli M, et al. (2000) Expression of members of the multidrug resistance protein family in human term placenta. Am J Physiol Regul Integr Comp Physiol 279: R1495–1503.
[6]  Jonker J, Smit J, Brinkhuis R, Maliepaard M, Beijnen J, et al. (2000) Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92: 1651–1656.
[7]  Ceckova M, Libra A, Pavek P, Nachtigal P, Brabec M, et al. (2006) Expression and functional activity of breast cancer resistance protein (BCRP, ABCG2) transporter in the human choriocarcinoma cell line BeWo. Clin Exp Pharmacol Physiol 33: 58–65.
[8]  Lankas G, Wise L, Cartwright M, Pippert T, Umbenhauer D (1998) Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol 12: 457–463.
[9]  Smit JW, Huisman MT, van Tellingen O, Wiltshire HR, Schinkel AH (1999) Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J Clin Invest 104: 1441–1447.
[10]  Zhou L, Naraharisetti S, Wang H, Unadkat J, Hebert M, et al. (2007) The breast cancer resistance protein (Bcrp1/Abcg2) limits fetal distribution of glyburide in the pregnant mouse - an OPRU Network and UW SCOR study. Mol Pharmacol 73: 949–959.
[11]  Gedeon C, Anger G, Piquette-Miller M, Koren G (2008) Breast cancer resistance protein: Mediating the trans-placental transfer of glyburide across the human placenta. Placenta 29: 39–43.
[12]  M?ls? M, Heikkinen T, Hakkola J, Hakala K, Wallerman O, et al. (2005) Functional role of P-glycoprotein in the human blood-placental barrier. Clinical Pharmacology and Therapeutics 78: 123–131.
[13]  Pollex E, Lubetsky A, Koren G (2008) The role of placental breast cancer resistance protein in the efflux of glyburide across the human placenta. Placenta 29: 743–747.
[14]  May K, Minarikova V, Linnemann K, Zygmunt M, Kroemer HK, et al. (2008) Role of the multidrug transporter proteins ABCB1 and ABCC2 in the diaplacental transport of talinolol in the term human placenta. Drug Metab Dispos 36: 740–744.
[15]  Jaeggi ET, Carvalho JS, De Groot E, Api O, Clur S-AB, et al. (2011) Comparison of transplacental treatment of fetal supraventricular tachyarrhythmias with digoxin, flecainide, and sotalol: results of a nonrandomized multicenter study. Circulation 124: 1747–1754.
[16]  Anger G, Piquette-Miller M (2011) Mechanisms of reduced maternal and fetal lopinavir exposure in a rat model of gestational diabetes. Drug Metab Dispos 39: 1850–1859.
[17]  Nelson DM, Burton GJ (2011) A technical note to improve the reporting of studies of the human placenta. Placenta 32: 195–196.
[18]  Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976: 248–254. pp. 248–254.
[19]  Merino G, van Herwaarden A, Wagenaar E, Jonker J, Schinkel A (2005) Sex-dependent expression and activity of the ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) in liver. Mol Pharmacol 67: 1765–1771.
[20]  Gil S, Saura R, Forestier F, Farinotti R (2005) P-glycoprotein expression of the human placenta during pregnancy. Placenta 26: 268–270.
[21]  Pascolo L, Fernetti C, Pirulli D, Crovella S, Amoroso A, et al. (2003) Effects of maturation on RNA transcription and protein expression of four MRP genes in human placenta and in BeWo cells. Biochem Biophys Res Commun 303: 259–265.
[22]  Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39: 175–191.
[23]  Knopp R, Humphrey J, Irvine S (1977) Biphasic metabolic control of hypertriglyceridemia in pregnancy. Clin Res 25: 126A.
[24]  Knopp RH, Warth MR, Charles D, Childs M, Li JR, et al. (1986) Lipoprotein metabolism in pregnancy, fat transport to the fetus, and the effects of diabetes. Biol Neonate 50: 297–317.
[25]  Koukkou E, Watts GF, Lowy C (1996) Serum lipid, lipoprotein and apolipoprotein changes in gestational diabetes mellitus: a cross-sectional and prospective study. J Clin Pathol 49: 634–637.
[26]  Couch SC, Philipson EH, Bendel RB, Pujda LM, Milvae RA, et al. (1998) Elevated lipoprotein lipids and gestational hormones in women with diet-treated gestational diabetes mellitus compared to healthy pregnant controls. J Diabetes Complicat 12: 1–9.
[27]  Cunningham F, Gant N, Leveno K, Gilstrap L, Hauth J, et al. (2001) Chapter 8: maternal adaptations to pregnancy. Williams Obstetrics. 21 ed: McGraw-Hill.
[28]  Silverman BL, Metzger BE, Cho NH, Loeb CA (1995) Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinism. Diabetes Care 18: 611–617.
[29]  Silverman BL, Rizzo TA, Cho NH, Metzger BE (1998) Long-term effects of the intrauterine environment. The Northwestern University Diabetes in Pregnancy Center. Diabetes Care 21: Suppl 2B142–149.
[30]  Winick M, Noble A (1967) Cellular growth in human placenta. II. Diabetes mellitus. J Pediatr 71: 216–219.
[31]  Nummi S (1972) Relative weight of the placenta and perinatal mortality. A retrospective clinical and statistical analysis. Acta Obstet Gynecol Scand: Suppl 171–69.
[32]  Spellacy WN, Miller S, Winegar A, Peterson PQ (1985) Macrosomia: maternal characteristics and infant complications. Obstetrics and gynecology 66: 158–161.
[33]  Laurini RN, Visser GH, van Ballegooie E, Schoots CJ (1987) Morphological findings in placentae of insulin-dependent diabetic patients treated with continuous subcutaneous insulin infusion (CSII). Placenta 8: 153–165.
[34]  Naeye RL (1987) Do placental weights have clinical significance? Hum Pathol 18: 387–391.
[35]  Clarson C, Tevaarwerk GJ, Harding PG, Chance GW, Haust MD (1989) Placental weight in diabetic pregnancies. Placenta 10: 275–281.
[36]  Kucuk M, Doymaz F (2009) Placental weight and placental weight-to-birth weight ratio are increased in diet- and exercise-treated gestational diabetes mellitus subjects but not in subjects with one abnormal value on 100-g oral glucose tolerance test. J Diabetes Complicat 23: 25–31.
[37]  Kim C, Newton KM, Knopp RH (2002) Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care 25: 1862–1868.
[38]  Damm P (2009) Future risk of diabetes in mother and child after gestational diabetes mellitus. Int J Gynaecol Obstet 104: Suppl 1S25–26.
[39]  Karcaaltincaba D, Yalvac S, Kandemir O, Altun S (2010) Glycosylated hemoglobin level in the second trimester predicts birth weight and amniotic fluid volume in non-diabetic pregnancies with abnormal screening test. J Matern Fetal Neonatal Med 23: 1193–1199.
[40]  Nielsen GL, Dethlefsen C, M?ller M, S?rensen HT (2007) Maternal glycated haemoglobin, pre-gestational weight, pregnancy weight gain and risk of large-for-gestational-age babies: a Danish cohort study of 209 singleton Type 1 diabetic pregnancies. Diabet Med 24: 384–387.
[41]  Rahbar S, Blumenfeld O, Ranney HM (1969) Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem Biophys Res Commun 36: 838–843.
[42]  Murphy HR, Rayman G, Lewis K, Kelly S, Johal B, et al. (2008) Effectiveness of continuous glucose monitoring in pregnant women with diabetes: randomised clinical trial. BMJ 337: a1680.
[43]  Pavek P, Merino G, Wagenaar E, Bolscher E, Novotna M, et al. (2005) Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo(4,5-b)p?yridine,and transport of cimetidine. J Pharmacol Exp Ther 312: 144–152.
[44]  Merino G, Jonker JW, Wagenaar E, van Herwaarden AE, Schinkel AH (2005) The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin. Mol Pharmacol 67: 1758–1764.
[45]  Ando T, Kusuhara H, Merino G, Alvarez AI, Schinkel AH, et al. (2007) Involvement of breast cancer resistance protein (ABCG2) in the biliary excretion mechanism of fluoroquinolones. Drug Metab Dispos 35: 1873–1879.
[46]  van Herwaarden AE, Wagenaar E, Karnekamp B, Merino G, Jonker JW, et al. (2006) Breast cancer resistance protein (Bcrp1/Abcg2) reduces systemic exposure of the dietary carcinogens aflatoxin B1, IQ and Trp-P-1 but also mediates their secretion into breast milk. Carcinogenesis 27: 123–130.
[47]  Janvilisri T, Venter H, Shahi S, Reuter G, Balakrishnan L, et al. (2003) Sterol transport by the human breast cancer resistance protein (ABCG2) expressed in Lactococcus lactis. J Biol Chem 278: 20645–20651.
[48]  Zamek-Gliszczynski MJ, Nezasa K-I, Tian X, Kalvass JC, Patel NJ, et al. (2006) The important role of Bcrp (Abcg2) in the biliary excretion of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice. Mol Pharmacol 70: 2127–2133.
[49]  Langer O, Conway DL, Berkus MD, Xenakis EM, Gonzales O (2000) A comparison of glyburide and insulin in women with gestational diabetes mellitus. N Engl J Med 343: 1134–1138.
[50]  Langer O, Yogev Y, Xenakis EMJ, Rosenn B (2005) Insulin and glyburide therapy: dosage, severity level of gestational diabetes, and pregnancy outcome. American Journal of Obstetrics and Gynecology 192: 134–139.
[51]  Tanabe M, Ieiri I, Nagata N, Inoue K, Ito S, et al. (2001) Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J Pharmacol Exp Ther 297: 1137–1143.
[52]  Schuetz EG, Furuya KN, Schuetz JD (1995) Interindividual variation in expression of P-glycoprotein in normal human liver and secondary hepatic neoplasms. J Pharmacol Exp Ther 275: 1011–1018.
[53]  Meier Y, Pauli-Magnus C, Zanger UM, Klein K, Schaeffeler E, et al. (2006) Interindividual variability of canalicular ATP-binding-cassette (ABC)-transporter expression in human liver. Hepatology 44: 62–74.
[54]  Owen A, Goldring C, Morgan P, Chadwick D, Park BK, et al. (2005) Relationship between the C3435T and G2677T(A) polymorphisms in the ABCB1 gene and P-glycoprotein expression in human liver. Br J Clin Pharmacol 59: 365–370.
[55]  Dürr D, Stieger B, Kullak-Ublick GA, Rentsch KM, Steinert HC, et al. (2000) St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clinical Pharmacology and Therapeutics 68: 598–604.
[56]  Simon C, Stieger B, Kullak-Ublick GA, Fried M, Mueller S, et al. (2007) Intestinal expression of cytochrome P450 enzymes and ABC transporters and carbamazepine and phenytoin disposition. Acta Neurol Scand 115: 232–242.
[57]  Mason CW, Buhimschi IA, Buhimschi CS, Dong Y, Weiner CP, et al. (2011) ATP-binding cassette transporter expression in human placenta as a function of pregnancy condition. Drug metabolism and disposition: the biological fate of chemicals 39: 1000–1007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133