Although odour perception impacts food preferences, the effect of genotypic variation of odorant receptors (ORs) on the sensory perception of food is unclear. Human OR7D4 responds to androstenone, and genotypic variation in OR7D4 predicts variation in the perception of androstenone. Since androstenone is naturally present in meat derived from male pigs, we asked whether OR7D4 genotype correlates with either the ability to detect androstenone or the evaluation of cooked pork tainted with varying levels of androstenone within the naturally-occurring range. Consistent with previous findings, subjects with two copies of the functional OR7D4 RT variant were more sensitive to androstenone than subjects carrying a non-functional OR7D4 WM variant. When pork containing varying levels of androstenone was cooked and tested by sniffing and tasting, subjects with two copies of the RT variant tended to rate the androstenone-containing meat as less favourable than subjects carrying the WM variant. Our data is consistent with the idea that OR7D4 genotype predicts the sensory perception of meat containing androstenone and that genetic variation in an odorant receptor can alter food preferences.
References
[1]
Kim UK, Jorgenson E, Coon H, Leppert M, Risch N, et al. (2003) Positional cloning of the human quantitative trait locus underlying taste sensitivity to phenylthiocarbamide. Science 299: 1221–1225.
[2]
Dotson CD, Shaw HL, Mitchell BD, Munger SD, Steinle NI (2010) Variation in the gene TAS2R38 is associated with the eating behavior disinhibition in Old Order Amish women. Appetite 54: 93–99.
[3]
Hasin-Brumshtein Y, Lancet D, Olender T (2009) Human olfaction: from genomic variation to phenotypic diversity. Trends Genet 25: 178–184.
[4]
Shahidi F (1998) Flavor of meat, meat products and seafoods: Springer.
[5]
Dorries KM, Adkins-Regan E, Halpern BP (1997) Sensitivity and behavioral responses to the pheromone androstenone are not mediated by the vomeronasal organ in domestic pigs. Brain Behav Evol 49: 53–62.
[6]
Patterson RLS (1968) 5-androst-16-en-3-one, compound responsible for taint in boar fat. Journal of the Science of Food and Agriculture 19: 31–38.
[7]
Vold E (1970) Fleischproduktionseigenschaften bei Ebern und Kastraten. IV. Organoleptische und gaschromatografische Untersuchungen Wassedampfflüchtiger Stooffe des Rückenspeckes von Ebern.. Meldinger Nordlandbruckhoegskole 49: 1–25.
[8]
Weiler U, Fischer K, Kemmer H, Dobrowolski A, Claus R (1997) Influence of androstenone sensitivity on consumer reactions to boar meat. In M Bonneau, K Lundstr?m, & B Malmfors Boar taint in entire male pigs EAAP Publication 92: 147–151.
[9]
Ba?ón S, Costa E, Gil MD, Garrido MD (2003) A comparative study of boar taint in cooked and dry-cured meat. Meat Sci 63: 381–388.
[10]
Font I, Furnols M, Guerrero L, Serra X, Rius MA, Oliver MA (2000) Sensory characterization of boar taint in entire male pigs. Journal of Sensory Studies 15: 393–409.
[11]
Lunde K, Skuterud E, Nilsen A, Egelandsdal B (2009) A new method for differentiating the androstenone sensitivity among consumers. Food Quality and Preference 20: 304–311.
[12]
Oliver MA, Thomas C, Bonneau M, Doran O, Tacken G, et al. (2009) Study of the Improved Methods for Animal-Friendly Production, in Particular on Alternatives to Pig Castration. Directorate General for Health and Consumers, Animal Health and Welfare Directorate (SANCO).
[13]
Beets MGJ, Theimer ET (1970) Odour similarity between structurally unrelated odorants. In: Wostenholme GEW, Knight J, editors. Taste and Smell in Vertebrates. London: J. & A. Churchill. pp. 313–323.
[14]
Wysocki CJ, Beauchamp GK (1984) Ability to smell androstenone is genetically determined. Proc Natl Acad Sci U S A 81: 4899–4902.
[15]
Kline JP, Schwartz GE, Dikman ZV (2007) Interpersonal defensiveness and diminished perceptual acuity for the odor of a putative pheromone: androstenone. Biol Psychol 74: 405–413.
[16]
Lunde K, Skuterud E, Hersleth M, Egelandsdal B (2010) Norwegian consumers’ acceptability of boar tainted meat with different levels of androstenone or skatole as related to their androstenone sensitivity. Meat Sci 86: 706–711.
[17]
Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H (2007) Genetic variation in a human odorant receptor alters odour perception. Nature 449: 468–472.
[18]
Wysocki CJ, Dorries KM, Beauchamp GK (1989) Ability to perceive androstenone can be acquired by ostensibly anosmic people. Proc Natl Acad Sci U S A 86: 7976–7978.
[19]
Pause BM, Rogalski KP, Sojka B, Ferstl R (1999) Sensitivity to androstenone in female subjects is associated with an altered brain response to male body odor. Physiol Behav 68: 129–137.
[20]
Mainland JD, Bremner EA, Young N, Johnson BN, Khan RM, et al. (2002) Olfactory plasticity: one nostril knows what the other learns. Nature 419: 802.
[21]
Wang L, Chen L, Jacob T (2004) Evidence for peripheral plasticity in human odour response. J Physiol 554: 236–244.
[22]
Stevens DA, O’Connell RJ (1995) Enhanced sensitivity to androstenone following regular exposure to pemenone. Chem Senses 20: 413–419.
[23]
Gibis M (1994) Influence of substance indole and skatole on meat quality. Doctoral Thesis University of Hohenheim, Germany.
[24]
Tuomola M, Harpio R, Knuuttila P, Mikola H, L?vgren T (1997) Time-Resolved Fluoroimmunoassay for the Measurement of Androstenone in Porcine Serum and Fat Samples. Journal of Agricultural and Food Chemistry 45: 3529–3534.
[25]
Andresen O (1974) Development of a radioimmunoassay for 5 alpha-androst-16-en-3-one in pig peripheral plasma. Acta Endocrinol (Copenh) 76: 377–387.