全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

The Origin of the ‘Mycoplasma mycoides Cluster’ Coincides with Domestication of Ruminants

DOI: 10.1371/journal.pone.0036150

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ‘Mycoplasma mycoides cluster’ comprises the ruminant pathogens Mycoplasma mycoides subsp. mycoides the causative agent of contagious bovine pleuropneumonia (CBPP), Mycoplasma capricolum subsp. capripneumoniae the agent of contagious caprine pleuropneumonia (CCPP), Mycoplasma capricolum subsp. capricolum, Mycoplasma leachii and Mycoplasma mycoides subsp. capri. CBPP and CCPP are major livestock diseases and impact the agricultural sector especially in developing countries through reduced food-supply and international trade restrictions. In addition, these diseases are a threat to disease-free countries. We used a multilocus sequence typing (MLST) approach to gain insights into the demographic history of and phylogenetic relationships among the members of the ‘M. mycoides cluster’. We collected partial sequences from seven housekeeping genes representing a total of 3,816 base pairs from 118 strains within this cluster, and five strains isolated from wild Caprinae. Strikingly, the origin of the ‘M. mycoides cluster’ dates to about 10,000 years ago, suggesting that the establishment and spread of the cluster coincided with livestock domestication. In addition, we show that hybridization and recombination may be important factors in the evolutionary history of the cluster.

References

[1]  Cottew GS, Breard A, DaMassa AJ, Erno H, Leach RH, et al. (1987) Taxonomy of the Mycoplasma mycoides cluster. Isr J Med Sci 23: 632–635.
[2]  Hutyra F, Marek J, Manninger R (1938) Contagious Bovine Pleuropneumonia. In: Greig JR, Mohler JR, Eichhorn A, editors. London: Balliere, Tindal and Cox.
[3]  Fisher J (2006) The origins, spread and disappearance of contagious bovine pleuro-pneumonia in New Zealand. Aust Vet J 84: 439–444.
[4]  Thomas P (1873) Rapport médical sur le Bou Frida. In: Jourdan A, editor. Publication du gouvernement général civil de l'Algérie. Algiers.
[5]  Manso-Silvan L, Vilei EM, Sachse K, Djordjevic SP, Thiaucourt F, et al. (2009) Mycoplasma leachii sp. nov. as a new species designation for Mycoplasma sp. bovine group 7 of Leach, and reclassification of Mycoplasma mycoides subsp. mycoides LC as a serovar of Mycoplasma mycoides subsp. capri. Int J Syst Evol Microbiol 59: 1353–1358.
[6]  Kim KS, Ko KS, Chang MW, Hahn TW, Hong SK, et al. (2003) Use of rpoB sequences for phylogenetic study of Mycoplasma species. FEMS Microbiol Lett 226: 299–305.
[7]  Vilei EM, Korczak BM, Frey J (2006) Mycoplasma mycoides subsp. capri and Mycoplasma mycoides subsp. mycoides LC can be grouped into a single subspecies. Vet Res 37: 779–790.
[8]  Manso-Silvan L, Perrier X, Thiaucourt F (2007) Phylogeny of the Mycoplasma mycoides cluster based on analysis of five conserved protein-coding sequences and possible implications for the taxonomy of the group. Int J Syst Evol Microbiol 57: 2247–2258.
[9]  Nwankpa ND, Manso-Silvan L, Lorenzon S, Yaya A, Lombin LH, et al. (2010) Variable Number Tandem Repeat (VNTR) analysis reveals genetic diversity within Mycoplasma mycoides mycoides Small Colony isolates from Nigeria. Vet Microbiol 146(3–4): 354–355.
[10]  Yaya A, Manso-Silvan L, Blanchard A, Thiaucourt F (2008) Genotyping of Mycoplasma mycoides subsp. mycoides SC by multilocus sequence analysis allows molecular epidemiology of contagious bovine pleuropneumonia. Vet Res 39: 14.
[11]  Manso-Silvan L, Dupuy V, Chu Y, Thiaucourt F (2011) Multi-locus sequence analysis of Mycoplasma capricolum subsp. capripneumoniae for the molecular epidemiology of contagious caprine pleuropneumonia. Veterinary research 42: 86.
[12]  Thiaucourt F, Manso-Silvan L, Salah W, Barbe V, Vacherie B, et al. (2011) Mycoplasma mycoides, from “mycoides Small Colony” to “capri”. A microevolutionary perspective. BMC genomics 12: 114.
[13]  Stipkovits L, El-Ebeedy A (1977) Biochemical and serological studies of avian mycoplasmas. Zentralblatt fur Veterinarmedizin Reihe B Journal of veterinary medicine Series B 24: 218–230.
[14]  Falush D, Wirth T, Linz B, Pritchard JK, Stephens M, et al. (2003) Traces of human migrations in Helicobacter pylori populations. Science 299: 1582–1585.
[15]  Bruford MW, Bradley DG, Luikart G (2003) DNA markers reveal the complexity of livestock domestication. Nature reviews Genetics 4: 900–910.
[16]  Naderi S, Rezaei HR, Pompanon F, Blum MG, Negrini R, et al. (2008) The goat domestication process inferred from large-scale mitochondrial DNA analysis of wild and domestic individuals. Proceedings of the National Academy of Sciences of the United States of America 105: 17659–17664.
[17]  Gotherstrom A, Anderung C, Hellborg L, Elburg R, Smith C, et al. (2005) Cattle domestication in the Near East was followed by hybridization with aurochs bulls in Europe. Proceedings Biological sciences/The Royal Society 272: 2345–2350.
[18]  Zeder MA, Hesse B (2000) The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science 287: 2254–2257.
[19]  Sirand-Pugnet P, Lartigue C, Marenda M, Jacob D, Barre A, et al. (2007) Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. PLoS Genet 3: e75.
[20]  Thomas A, Linden A, Mainil J, Bischof DF, Frey J, et al. (2005) Mycoplasma bovis shares insertion sequences with Mycoplasma agalactiae and Mycoplasma mycoides subsp. mycoides SC: Evolutionary and developmental aspects. FEMS Microbiol Lett 245: 249–255.
[21]  Kusiluka LJ, Ojeniyi B, Friis NF, Kokotovic B, Ahrens P (2001) Molecular analysis of field strains of Mycoplasma capricolum subspecies capripneumoniae and Mycoplasma mycoides subspecies mycoides, small colony type isolated from goats in Tanzania. Vet Microbiol 82: 27–37.
[22]  Thiaucourt F, Lorenzon S, David A, Breard A (2000) Phylogeny of the Mycoplasma mycoides cluster as shown by sequencing of a putative membrane protein gene. Vet Microbiol 72: 251–268.
[23]  DaMassa AJ, Brooks DL, Adler HE (1983) Caprine mycoplasmosis: widespread infection in goats with Mycoplasma mycoides subsp mycoides (large-colony type). American journal of veterinary research 44: 322–325.
[24]  Nicolas MM, Stalis IH, Clippinger TL, Busch M, Nordhausen R, et al. (2005) Systemic disease in Vaal rhebok (Pelea capreolus) caused by mycoplasmas in the mycoides cluster. Journal of clinical microbiology 43: 1330–1340.
[25]  Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kampfer P, et al. (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. International journal of systematic and evolutionary microbiology 52: 1043–1047.
[26]  Wirth T, Falush D, Lan R, Colles F, Mensa P, et al. (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Molecular microbiology 60: 1136–1151.
[27]  Mayor D, Jores J, Korczak BM, Kuhnert P (2008) Multilocus sequence typing (MLST) of Mycoplasma hyopneumoniae: a diverse pathogen with limited clonality. Vet Microbiol 127: 63–72.
[28]  Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, et al. (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95: 3140–3145.
[29]  Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.
[30]  Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theoretical population biology 7: 256–276.
[31]  Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
[32]  Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.
[33]  Hudson RR (2001) Two-locus sampling distributions and their application. Genetics 159: 1805–1817.
[34]  McVean G, Awadalla P, Fearnhead P (2002) A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160: 1231–1241.
[35]  Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
[36]  Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.
[37]  Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molecular Ecology Notes 4: 137–138.
[38]  Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. The Journal of heredity 92: 371–373.
[39]  Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.
[40]  Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25: 1253–1256.
[41]  Salemi M, Vandamme A-M, Lemey P (2009) The phylogenetic handbook: a practical approach to phylogenetic analysis and hypothesis testing. Cambridge: Cambridge University Press.
[42]  Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology 59: 307–321.
[43]  Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC evolutionary biology 7: 214.
[44]  Fisher J (2003) To kill or not to kill: the eradication of contagious bovine pleuro-pneumonia in western Europe. Med Hist 47: 314–331.
[45]  Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular biology and evolution 22: 1185–1192.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133