[1] | Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature 224: 177–178.
|
[2] | Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42: 563–585.
|
[3] | Turing AM (1948) Intelligent Machinery. The Turing Digital Archive. Available: http://www.turingarchive.org/browse.php/?C/11.
|
[4] | Eiben AE, Schoenauer M (2002) Evolutionary computing. Information Processing Letters 82: 1–6.
|
[5] | Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages, and computation. Reading, Mass: Addison-Wesley. 418 p.
|
[6] | Beaver (1995) A universal molecular computer. In: Lipton EBB RichardJ, editor. Princeton University. pp. 29–36.
|
[7] | Rothemund PWK (1995) A DNA and restriction enzyme implementation of Turing Machines. In: Lipton EBB RichardJ, editor. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Princeton University. pp. 75–120.
|
[8] | Smith W (1995) DNA computers in vitro and vivo. In: RichardLipton EBB J, editor. American Mathematical Society. pp. 121–186.
|
[9] | D. Rooss KWW (1996) On the power of bio-computers. Technical Report, University of Wurzburg. Available: http://ksuseer1.ist.psu.edu/viewdoc/summ?ary?doi=10.1.1.55.7231.
|
[10] | Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266: 1021–1024.
|
[11] | Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 278: 446–449.
|
[12] | Lipton RJ (1995) DNA solution of hard computational problems. Science 268: 542–545.
|
[13] | Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, et al. (2000) Molecular computation by DNA hairpin formation. Science 288: 1223–1226.
|
[14] | Braich RS, Chelyapov N, Johnson C, Rothemund PW, Adleman L (2002) Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296: 499–502.
|
[15] | Regev A, Shapiro E (2002) Cells as computation. Nature 419: 343.
|
[16] | Mario Coppo FD, Drocco Maurizio, Grassi Elena, Troina Angelo (2010) Stochastic Calculus of Wrapped Compartments. pp. 82–98. Quantitative Aspects of Programming Languages.
|
[17] | Regev A, Silverman W, Shapiro E (2001) Representation and simulation of biochemical processes using the pi-calculus process algebra. Pac Symp Biocomput 459–470.
|
[18] | Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A (2007) The Calculus of Looping Sequenes for Modeling Biological Membranes. pp. 54–76. 8th Workshop on Membrane Computing, LNCS 4860: Springer.
|
[19] | Regev A, Panina E, Silverman W, Cardelli L, Shapiro E (2004) BioAmbients: an abstraction for biological compartments. Theoretical Computer Science 325: 141–167.
|
[20] | Hartmann L, Jones ND, Simonsen JG, Vrist SB (2011) Programming in biomolecular computation: programs, self-interpretation and visualisation. Scientific Annals of Computer Science 21: 73–106.
|
[21] | Kaern M, Blake WJ, Collins JJ (2003) The engineering of gene regulatory networks. Annu Rev Biomed Eng 5: 179–206.
|
[22] | Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, et al. (2002) A genomic regulatory network for development. Science 295: 1669–1678.
|
[23] | Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403: 335–338.
|
[24] | Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403: 339–342.
|
[25] | Takinoue M, Kiga D, Shohda K, Suyama A (2008) Experiments and simulation models of a basic computation element of an autonomous molecular computing system. Phys Rev E Stat Nonlin Soft Matter Phys 78: 041921.
|
[26] | Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science 332: 1196–1201.
|
[27] | Weiss R, Basu S, Hooshangi S, Kalmbach A, Karig D, et al. (2003) Genetic circuit building blocks for cellular computation, communications, and signal processing. 2: 47–84.
|
[28] | Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9: 465–476.
|
[29] | Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, et al. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39: 457–466.
|
[30] | Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41–45.
|
[31] | Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22: 836–845.
|
[32] | Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074–1080.
|
[33] | Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14: R546–551.
|
[34] | Kouzarides T (2007) Chromatin modifications and their function. Cell 128: 693–705.
|
[35] | Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43: 559–599.
|
[36] | Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8: 983–994.
|
[37] | Turner BM (2007) Defining an epigenetic code. Nat Cell Biol 9: 2–6.
|
[38] | Suganuma T, Workman JL (2008) Crosstalk among Histone Modifications. Cell 135: 604–607.
|
[39] | Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21: 564–578.
|
[40] | Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, et al. (1992) Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev 6: 705–714.
|
[41] | Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10: 295–304.
|
[42] | Borggrefe T, Davis R, Bareket-Samish A, Kornberg RD (2001) Quantitation of the RNA polymerase II transcription machinery in yeast. J Biol Chem 276: 47150–47153.
|
[43] | Deng W, Blobel GA (2010) Do chromatin loops provide epigenetic gene expression states? Curr Opin Genet Dev 20: 548–554.
|
[44] | Krivega I, Dean A (2011) Enhancer and promoter interactions-long distance calls. Curr Opin Genet Dev.
|
[45] | Razin SV, Gavrilov AA, Pichugin A, Lipinski M, Iarovaia OV, et al. (2011) Transcription factories in the context of the nuclear and genome organization. Nucleic Acids Res 39: 9085–9092.
|
[46] | Ohlsson R, Bartkuhn M, Renkawitz R (2010) CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin. Chromosoma 119: 351–360.
|
[47] | Reece-Hoyes JS, Deplancke B, Shingles J, Grove CA, Hope IA, et al. (2005) A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks. Genome Biol 6: R110.
|
[48] | Vogel U, Jensen KF (1994) The RNA chain elongation rate in Escherichia coli depends on the growth rate. J Bacteriol 176: 2807–2813.
|
[49] | Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, et al. (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459: 108–112.
|
[50] | Perez-Lluch S, Blanco E, Carbonell A, Raha D, Snyder M, et al. (2011) Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing. Nucleic Acids Res 39: 4628–4639.
|
[51] | Feeney AJ (2011) Epigenetic regulation of antigen receptor gene rearrangement. Curr Opin Immunol 23: 171–177.
|
[52] | Tirosh I, Barkai N (2008) Two strategies for gene regulation by promoter nucleosomes. Genome Res 18: 1084–1091.
|
[53] | Haynes KA, Silver PA (2011) Synthetic reversal of epigenetic silencing. J Biol Chem.
|
[54] | Benayoun BA, Veitia RA (2009) A post-translational modification code for transcription factors: sorting through a sea of signals. Trends Cell Biol 19: 189–197.
|
[55] | Madhani HD, Francis NJ, Kingston RE, Kornberg RD, Moazed D, et al. (2008) Epigenomics: a roadmap, but to where? Science 322: 43–44.
|
[56] | Ptashne M, Hobert O, Davidson E (2010) Questions over the scientific basis of epigenome project. Nature 464: 487.
|