全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Chromatin Computation

DOI: 10.1371/journal.pone.0035703

Full-Text   Cite this paper   Add to My Lib

Abstract:

In living cells, DNA is packaged along with protein and RNA into chromatin. Chemical modifications to nucleotides and histone proteins are added, removed and recognized by multi-functional molecular complexes. Here I define a new computational model, in which chromatin modifications are information units that can be written onto a one-dimensional string of nucleosomes, analogous to the symbols written onto cells of a Turing machine tape, and chromatin-modifying complexes are modeled as read-write rules that operate on a finite set of adjacent nucleosomes. I illustrate the use of this “chromatin computer” to solve an instance of the Hamiltonian path problem. I prove that chromatin computers are computationally universal – and therefore more powerful than the logic circuits often used to model transcription factor control of gene expression. Features of biological chromatin provide a rich instruction set for efficient computation of nontrivial algorithms in biological time scales. Modeling chromatin as a computer shifts how we think about chromatin function, suggests new approaches to medical intervention, and lays the groundwork for the engineering of a new class of biological computing machines.

References

[1]  Kauffman S (1969) Homeostasis and differentiation in random genetic control networks. Nature 224: 177–178.
[2]  Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42: 563–585.
[3]  Turing AM (1948) Intelligent Machinery. The Turing Digital Archive. Available: http://www.turingarchive.org/browse.php/?C/11.
[4]  Eiben AE, Schoenauer M (2002) Evolutionary computing. Information Processing Letters 82: 1–6.
[5]  Hopcroft JE, Ullman JD (1979) Introduction to automata theory, languages, and computation. Reading, Mass: Addison-Wesley. 418 p.
[6]  Beaver (1995) A universal molecular computer. In: Lipton EBB RichardJ, editor. Princeton University. pp. 29–36.
[7]  Rothemund PWK (1995) A DNA and restriction enzyme implementation of Turing Machines. In: Lipton EBB RichardJ, editor. DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Princeton University. pp. 75–120.
[8]  Smith W (1995) DNA computers in vitro and vivo. In: RichardLipton EBB J, editor. American Mathematical Society. pp. 121–186.
[9]  D. Rooss KWW (1996) On the power of bio-computers. Technical Report, University of Wurzburg. Available: http://ksuseer1.ist.psu.edu/viewdoc/summ?ary?doi=10.1.1.55.7231.
[10]  Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266: 1021–1024.
[11]  Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) DNA solution of the maximal clique problem. Science 278: 446–449.
[12]  Lipton RJ (1995) DNA solution of hard computational problems. Science 268: 542–545.
[13]  Sakamoto K, Gouzu H, Komiya K, Kiga D, Yokoyama S, et al. (2000) Molecular computation by DNA hairpin formation. Science 288: 1223–1226.
[14]  Braich RS, Chelyapov N, Johnson C, Rothemund PW, Adleman L (2002) Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296: 499–502.
[15]  Regev A, Shapiro E (2002) Cells as computation. Nature 419: 343.
[16]  Mario Coppo FD, Drocco Maurizio, Grassi Elena, Troina Angelo (2010) Stochastic Calculus of Wrapped Compartments. pp. 82–98. Quantitative Aspects of Programming Languages.
[17]  Regev A, Silverman W, Shapiro E (2001) Representation and simulation of biochemical processes using the pi-calculus process algebra. Pac Symp Biocomput 459–470.
[18]  Barbuti R, Maggiolo-Schettini A, Milazzo P, Troina A (2007) The Calculus of Looping Sequenes for Modeling Biological Membranes. pp. 54–76. 8th Workshop on Membrane Computing, LNCS 4860: Springer.
[19]  Regev A, Panina E, Silverman W, Cardelli L, Shapiro E (2004) BioAmbients: an abstraction for biological compartments. Theoretical Computer Science 325: 141–167.
[20]  Hartmann L, Jones ND, Simonsen JG, Vrist SB (2011) Programming in biomolecular computation: programs, self-interpretation and visualisation. Scientific Annals of Computer Science 21: 73–106.
[21]  Kaern M, Blake WJ, Collins JJ (2003) The engineering of gene regulatory networks. Annu Rev Biomed Eng 5: 179–206.
[22]  Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, et al. (2002) A genomic regulatory network for development. Science 295: 1669–1678.
[23]  Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403: 335–338.
[24]  Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403: 339–342.
[25]  Takinoue M, Kiga D, Shohda K, Suyama A (2008) Experiments and simulation models of a basic computation element of an autonomous molecular computing system. Phys Rev E Stat Nonlin Soft Matter Phys 78: 041921.
[26]  Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science 332: 1196–1201.
[27]  Weiss R, Basu S, Hooshangi S, Kalmbach A, Karig D, et al. (2003) Genetic circuit building blocks for cellular computation, communications, and signal processing. 2: 47–84.
[28]  Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9: 465–476.
[29]  Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, et al. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39: 457–466.
[30]  Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403: 41–45.
[31]  Turner BM (2000) Histone acetylation and an epigenetic code. Bioessays 22: 836–845.
[32]  Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074–1080.
[33]  Peterson CL, Laniel MA (2004) Histones and histone modifications. Curr Biol 14: R546–551.
[34]  Kouzarides T (2007) Chromatin modifications and their function. Cell 128: 693–705.
[35]  Campos EI, Reinberg D (2009) Histones: annotating chromatin. Annu Rev Genet 43: 559–599.
[36]  Ruthenburg AJ, Li H, Patel DJ, Allis CD (2007) Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol 8: 983–994.
[37]  Turner BM (2007) Defining an epigenetic code. Nat Cell Biol 9: 2–6.
[38]  Suganuma T, Workman JL (2008) Crosstalk among Histone Modifications. Cell 135: 604–607.
[39]  Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21: 564–578.
[40]  Kafri T, Ariel M, Brandeis M, Shemer R, Urven L, et al. (1992) Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev 6: 705–714.
[41]  Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10: 295–304.
[42]  Borggrefe T, Davis R, Bareket-Samish A, Kornberg RD (2001) Quantitation of the RNA polymerase II transcription machinery in yeast. J Biol Chem 276: 47150–47153.
[43]  Deng W, Blobel GA (2010) Do chromatin loops provide epigenetic gene expression states? Curr Opin Genet Dev 20: 548–554.
[44]  Krivega I, Dean A (2011) Enhancer and promoter interactions-long distance calls. Curr Opin Genet Dev.
[45]  Razin SV, Gavrilov AA, Pichugin A, Lipinski M, Iarovaia OV, et al. (2011) Transcription factories in the context of the nuclear and genome organization. Nucleic Acids Res 39: 9085–9092.
[46]  Ohlsson R, Bartkuhn M, Renkawitz R (2010) CTCF shapes chromatin by multiple mechanisms: the impact of 20 years of CTCF research on understanding the workings of chromatin. Chromosoma 119: 351–360.
[47]  Reece-Hoyes JS, Deplancke B, Shingles J, Grove CA, Hope IA, et al. (2005) A compendium of Caenorhabditis elegans regulatory transcription factors: a resource for mapping transcription regulatory networks. Genome Biol 6: R110.
[48]  Vogel U, Jensen KF (1994) The RNA chain elongation rate in Escherichia coli depends on the growth rate. J Bacteriol 176: 2807–2813.
[49]  Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, et al. (2009) Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459: 108–112.
[50]  Perez-Lluch S, Blanco E, Carbonell A, Raha D, Snyder M, et al. (2011) Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing. Nucleic Acids Res 39: 4628–4639.
[51]  Feeney AJ (2011) Epigenetic regulation of antigen receptor gene rearrangement. Curr Opin Immunol 23: 171–177.
[52]  Tirosh I, Barkai N (2008) Two strategies for gene regulation by promoter nucleosomes. Genome Res 18: 1084–1091.
[53]  Haynes KA, Silver PA (2011) Synthetic reversal of epigenetic silencing. J Biol Chem.
[54]  Benayoun BA, Veitia RA (2009) A post-translational modification code for transcription factors: sorting through a sea of signals. Trends Cell Biol 19: 189–197.
[55]  Madhani HD, Francis NJ, Kingston RE, Kornberg RD, Moazed D, et al. (2008) Epigenomics: a roadmap, but to where? Science 322: 43–44.
[56]  Ptashne M, Hobert O, Davidson E (2010) Questions over the scientific basis of epigenome project. Nature 464: 487.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133