Proteobacteria are thought to have diverged from a phototrophic ancestor, according to the scattered distribution of phototrophy throughout the proteobacterial clade, and so the occurrence of numerous closely related phototrophic and chemotrophic microorganisms may be the result of the loss of genes for phototrophy. A widespread form of bacterial phototrophy is based on the photochemical reaction center, encoded by puf and puh operons that typically are in a ‘photosynthesis gene cluster’ (abbreviated as the PGC) with pigment biosynthesis genes. Comparison of two closely related Citromicrobial genomes (98.1% sequence identity of complete 16S rRNA genes), Citromicrobium sp. JL354, which contains two copies of reaction center genes, and Citromicrobium strain JLT1363, which is chemotrophic, revealed evidence for the loss of phototrophic genes. However, evidence of horizontal gene transfer was found in these two bacterial genomes. An incomplete PGC (pufLMC-puhCBA) in strain JL354 was located within an integrating conjugative element, which indicates a potential mechanism for the horizontal transfer of genes for phototrophy.
References
[1]
Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33: 91–111.
[2]
Des Marais DJ (2000) Evolution: when did photosynthesis emerge on Earth? Science 289: 1703–1705.
[3]
Xiong J, Fischer WM, Inoue K, Nakahara M, Bauer CE (2000) Molecular evidence for the early evolution of photosynthesis. Science 289: 1724–1730.
[4]
Beatty JT (2002) On the natural selection and evolution of the aerobic phototrophic bacteria. Photosynth Res 73: 109–114.
[5]
Jiao N, Zhang Y, Zeng Y, Hong N, Liu R, et al. (2007) Distinct distribution pattern of abundance and diversity of aerobic anoxygenic phototrophic bacteria in the global ocean. Environ. Microbiol. 9: 3091–3099.
[6]
Koblí?ek M, Ma?ín M, Ras J, Poulton AJ, Prasil O (2007) Rapid growth rates of aerobic anoxygenic phototrophs in the ocean. Environ Microbiol 9: 2401–2406.
[7]
Kolber ZS, Plumley FG, Lang AS, Beatty JT, Blankenship RE, et al. (2001) Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292: 2492–2495.
[8]
Swingley WD, Blankenship RE, Raymond J (2009) Evolutionary Relationships Among Purple Photosynthetic Bacteria and the Origin of Proteobacterial Photosynthetic Systems. In: Hunter CNeil, Daldal Fevzi, editors. Marion C. Thurnauer and J. Thomas Beatty (eds): The Purple Phototrophic Bacteria. pp. 17–29.
Igarashi N, Harada J, Nagashima S, Matsuura K, Shimada K, et al. (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52: 333–341.
[11]
Nagashima KVP, Hiraishi A, Shimada K, Matsuura K (1997) Horizontal transfer of genes coding for the photosynthetic reaction centers of purple bacteria. J Mol Evol 45: 131–136.
[12]
Jiao N, Zhang R, Zheng Q (2010) Coexistence of two different photosynthetic operons in Citromicrobium bathyomarinum JL354 as revealed by whole-genome sequencing. J Bacteriol 192: 1169–1170.
[13]
Yurkov VV, Krieger S, Stackebrandt E, Beatty JT (1999) Citromicrobium bathyomarinum, a novel aerobic bacterium isolated from deep-sea hydrothermal vent plume waters that contains photosynthetic pigment-protein complexes. J Bacteriol 181: 4517–4525.
[14]
Zheng Q, Zhang R, Jiao N (2011) Genome sequence of Citromicrobium strain JLT1363, isolated from the South China Sea. J Bacteriol 193: 2074–2075.
[15]
Swingley WD, Sadekar S, Mastrian SD, Matthies HJ, Hao J, et al. (2007) The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism. J Bacteriol 189: 683–690.
[16]
Wagner-D?bler I, Ballhausen B, Berger M, Brinkhoff T, Buchholz I, et al. (2010) The complete genome sequence of the algal symbiont Dinoroseobacter shibae: a hitchhiker's guide to life in the sea. Isme J 4: 61–77.
[17]
Spring S, Lunsdorf H, Fuchs BM, Tindall BJ (2009) The photosynthetic apparatus and its regulation in the aerobic gammaproteobacterium Congregibacter litoralis gen. nov., sp nov. PLoS ONE 4(3): e4866. doi:10.1371/journal.pone.0004866.
[18]
Zheng Q, Zhang R, Koblí?ek M, Boldareva EN, Yurkov V, et al. (2011) Diverse arrangement of photosynthetic gene clusters in aerobic anoxygenic phototrophic bacteria. PLoS ONE 6(9): e25050. doi:10.1371/journal.pone.0025050.
[19]
Koblí?ek M, Béjà O, Bidigare RR, Christensen S, Benitez-Nelson B, et al. (2003) Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Arch Microbiol 180: 327–338.
[20]
Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42: 73–91.
[21]
Boltner D, MacMahon C, Pembroke JT, Strike P, Osborn AM (2002) R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J. Bacteriol. 184: 5158–5169.
[22]
Hacker J, Carniel E (2001) Ecological fitness, genomic islands and bacterial pathogenicity-A Darwinian view of the evolution of microbes. EMBO Rep. 2: 376–381.
[23]
Ventura M, Turroni F, Lima-Mendez G, Foroni E, Zomer A, et al. (2009) Comparative analyses of prophage-like elements present in Bifidobacterial genomes. Appl Environ Microbiol 75: 6929–6936.
[24]
Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, et al. (2010) Genome characteristics of a generalist marine bacterial lineage. Isme J 4: 784–798.
[25]
Wagner-D?bler I, Biebl H (2006) Environmental Biology of the Marine Roseobacter Lineage. Annu. Rev. Microbiol. 60: 255–280.
[26]
Polz MF, Hunt DE, Preheim SP, Weinreich DM (2006) Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Phil. Trans. R. Soc. B 361: 2009–2021.
[27]
Marrs BL (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 71: 971–973.
[28]
Lang AS, Beatty JT (2007) Importance of widespread gene transfer agent genes in α-proteobacteria. Trends in Microbiol 15: 54–62.
[29]
Lang AS, Beatty JT (2010) Gene transfer agents and defective bacteriophages as sources of extracellular prokaryotic DNA. In, Y. Kikuchi and E. Rykova (eds.), Extracellular Nucleic Acids, Nucleic Acids and Molecular Biology, Springer-Verlag Berlin Heidelberg. 25: 15–24.
[30]
B?ltner D, MacMahon C, Pembroke JT, Strike P, Osborn AM (2002) R391: a conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J Bacteriol 184: 5158–5169.
[31]
Burrus V, Marrero J, Waldor MK (2006) The current ICE age: biology and evolution of SXT-related integrating conjugative elements. Plasmid 55: 173–183.
[32]
Hochhut B, Marrero J, Waldor MK (2000) Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J. Bacteriol. 182: 2043–2047.
[33]
Ravatn R, Studer S, Springael D, Zehnder AJ, van der Meer JR (1998) Chromosomal integration, tandem amplification, and deamplification in Pseudomonas putida F1 of a 105-kilobase genetic element containing the chlorocatechol degradative genes from Pseudomonas sp. strain B13. J Bacteriol 180: 4360–4369.
[34]
Wozniak RAF, Fouts DE, Spagnoletti M, Colombo M, Ceccarelli D, et al. (2009) Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet 5(12): e1000786. doi:10.1371/journal.pgen.1000786.
[35]
Bukhari AI, Taylor AL (1975) Influence of insertations on packaging of the host sequences covalently linked to bacteriophage Mu DNA. Proc. Natl. Acad. Sci. U.S.A. 72: 4399–4403.
[36]
Fogg CP, Hynes PA, Digby E, Lang SA, Beatty TJ (2011) Characterization of a newly discovered Mu-like bacteriophage, RcapMu, in Rhodobacter capsulatus strain SB1003. Virology 421: 211–221.
[37]
Schr?der G, Dehio C (2005) Virulence-associated type IV secretion systems of Bartonella. Trends Microbiol 13: 336–342.
[38]
Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73: 775–808.
[39]
Backert S, Fronzes R, Waksman G (2008) VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol. 16: 409–413.
[40]
Yeo HJ, Waksman G (2004) Unveiling Molecular Scaffolds of the Type IV Secretion System. J. Bacteriol. 186: 1919–1926.
[41]
Christie PJ (1997) Agrobacterium tumefaciens T-complex transport apparatus: a paradigm for a new family of multifunctional transporters in eubacteria. J. Bacteriol. 179: 3085–3094.
[42]
Zhu J, Oger PM, Schrammeijer B, Hooykaas PJ, Farrand SK, et al. (2000) The bases of crown gall tumorigenesis. J. Bacteriol. 182: 3885–3895.
[43]
Liu Z, Binns AN (2003) Functional subsets of the virB type IV transport complex proteins involved in the capacity of Agrobacterium tumefaciens to serve as a recipient in virB-mediated conjugal transfer of plasmid RSF1010. J. Bacteriol. 185: 3259–3269.
[44]
Jiao N, Zhang F, Hong N (2010) Significant roles of bacteriochlorophylla supplemental to chlorophylla in the ocean. Isme J 4: 595–597.
[45]
Morgan GJ, Hatfull GF, Casjens S, Hendrix RW (2002) Bacteriophage Mu genome sequence: Analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317: 337–359.
[46]
Craig NL (1995) Unity in transposition reactions. Science 270: 253–254.
Taylor AL (1963) Bacteriophage-induced mutation in Escherichia coli. Proc. Natl. Acad. Sci. 50: 1043–1051.
[49]
Zeng Y, Chen X, Jiao N (2007) Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance based grouping analysis of pufM sequences. Letters in Applied Microbiology 45: 639–645.
[50]
Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics 5: 150–163.