全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Land Cover and Rainfall Interact to Shape Waterbird Community Composition

DOI: 10.1371/journal.pone.0035969

Full-Text   Cite this paper   Add to My Lib

Abstract:

Human land cover can degrade estuaries directly through habitat loss and fragmentation or indirectly through nutrient inputs that reduce water quality. Strong precipitation events are occurring more frequently, causing greater hydrological connectivity between watersheds and estuaries. Nutrient enrichment and dissolved oxygen depletion that occur following these events are known to limit populations of benthic macroinvertebrates and commercially harvested species, but the consequences for top consumers such as birds remain largely unknown. We used non-metric multidimensional scaling (MDS) and structural equation modeling (SEM) to understand how land cover and annual variation in rainfall interact to shape waterbird community composition in Chesapeake Bay, USA. The MDS ordination indicated that urban subestuaries shifted from a mixed generalist-specialist community in 2002, a year of severe drought, to generalist-dominated community in 2003, of year of high rainfall. The SEM revealed that this change was concurrent with a sixfold increase in nitrate-N concentration in subestuaries. In the drought year of 2002, waterbird community composition depended only on the direct effect of urban development in watersheds. In the wet year of 2003, community composition depended both on this direct effect and on indirect effects associated with high nitrate-N inputs to northern parts of the Bay, particularly in urban subestuaries. Our findings suggest that increased runoff during periods of high rainfall can depress water quality enough to alter the composition of estuarine waterbird communities, and that this effect is compounded in subestuaries dominated by urban development. Estuarine restoration programs often chart progress by monitoring stressors and indicators, but rarely assess multivariate relationships among them. Estuarine management planning could be improved by tracking the structure of relationships among land cover, water quality, and waterbirds. Unraveling these complex relationships may help managers identify and mitigate ecological thresholds that occur with increasing human land cover.

References

[1]  Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, et al. (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809.
[2]  Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, et al. (2000) Climate extremes: Observations, modeling, and impacts. Science 289: 2068–2074.
[3]  Paracuellos M, Telleria JL (2004) Factors affecting the distribution of a waterbird community: The role of habitat configuration and bird abundance. Waterbirds 27: 446–453.
[4]  Thrush SF, Halliday J, Hewitt JE, Lohrer AM (2008) The effects of habitat loss, fragmentation, and community homogenization on resilience in estuaries. Ecological Applications 18: 12–21.
[5]  Traut AH, Hostetler ME (2004) Urban lakes and waterbirds: effects of shoreline development on avian distribution. Landscape and Urban Planning 69: 69–85.
[6]  Howarth RW, Swaney DP, Boyer EW, Marino R, Jaworski N, et al. (2006) The influence of climate on average nitrogen export from large watersheds in the Northeastern United States. Biogeochemistry 79: 163–186.
[7]  Rabalais NN, Turner RE, Diaz RJ, Justic D (2009) Global change and eutrophication of coastal waters. Ices Journal of Marine Science 66: 1528–1537.
[8]  Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321: 926–929.
[9]  Essington TE, Paulsen CE (2010) Quantifying Hypoxia Impacts on an Estuarine Demersal Community Using a Hierarchical Ensemble Approach. Ecosystems 13: 1035–1048.
[10]  Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America 105: 15452–15457.
[11]  O'Connell TJ, Jackson LE, Brooks RP (2000) Bird guilds as indicators of ecological condition in the central Appalachians. Ecological Applications 10: 1706–1721.
[12]  DeLuca WV, Studds CE, Rockwood LL, Marra PP (2004) Influence of land use on the integrity of marsh bird communities of Chesapeake Bay, USA. Wetlands 24: 837–847.
[13]  DeLuca WV, Studds CE, King RS, Marra PP (2008) Coastal urbanization and the integrity of estuarine waterbird communities: Threshold responses and the importance of scale. Biological Conservation 141: 2669–2678.
[14]  Erwin RM (1996) Dependence of waterbirds and shorebirds on shallow-water habitats in the mid-Atlantic coastal region: An ecological profile and management recommendations. Estuaries 19: 213–219.
[15]  Kennish MJ (2002) Environmental threats and environmental future of estuaries. Environmental Conservation 29: 78–107.
[16]  Langland MJ, Phillips SW, Raffensperger JP, Moyer DL (2004) Changes in streamflow and water quality in selected nontidal sites in the Chesapeake Bay Basin, 1985–2003. Scientific Investigations Report 2004–5259: U.S. Geological Survey, Reston, VA, USA.
[17]  Acker JG, Harding LW, Leptoukh G, Zhu T, Shen SH (2005) Remotely-sensed chl a at the Chesapeake Bay mouth is correlated with annual freshwater flow to Chesapeake Bay. Geophysical Research Letters 32:
[18]  King RS, Deluca WV, Whigham DF, Marra PP (2007) Threshold effects of coastal urbanization on Phragmites australis (common reed) abundance and foliar nitrogen in Chesapeake Bay. Estuaries and Coasts 30: 469–481.
[19]  United States Enivronmental Protection Agency (USEPA) (2000) Multi-Resolution Land Characteristics Consortium (MRLC) Database. Available: http://www.mrlc.gov/nlcd1992.php. Accessed: 10 June 2009.
[20]  Nichols JD, Hines JE, Sauer JR, Fallon FW, Fallon JE, et al. (2000) A double-observer approach for estimating detection probability and abundance from point counts. Auk 117: 393–408.
[21]  Jordan TE, Weller DE, Correll DL (2003) Sources of nutrient inputs to the Patuxent River estuary. Estuaries 26: 226–243.
[22]  McCune B, Grace JB (2002) Analysis of ecological communities. Gleneden Beach, OR, USA: MJM Software Design. 304 p.
[23]  Faith DP, Norris RH (1989) Correlation of environmental variables with pattersn of distribution and abundance of common and rare freshwater macroinvertebrates Biological Conservation 50: 77–98.
[24]  R Development Core Team (2011) R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available: http://www.R-project.org/. Accessed 3 March 2011.
[25]  Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. (2011) vegan: Community Ecology Package. R package version 2.0-2. Available: http://CRAN.R-project.org/package=vegan. Accessed: 3 March 2011.
[26]  Mitsch WJ, Gosselink JG (2000) Wetlands. New York, NY, USA: Wiley. 920 p.
[27]  Bulleri F, Chapman MG (2010) The introduction of coastal infrastructure as a driver of change in marine environments. Journal of Applied Ecology 47: 26–35.
[28]  Paerl HW (2009) Controlling Eutrophication along the Freshwater-Marine Continuum: Dual Nutrient (N and P) Reductions are Essential. Estuaries and Coasts 32: 593–601.
[29]  Yu K, DeLaune RD, Seo DC (2008) Influence of salinity level on sediment denitrification in a Louisiana estuary receiving diverted Mississippi River water. Archives of Agronomy and Soil Science 54: 249–257.
[30]  Connell DW, Miller GJ (1984) Chemistry and ecotoxicology of pollution. New York, NY, USA: John Wiley & Sons.
[31]  Preston SD, Brakebill JW (1999) Application of spatially referenced regression modeling for the evaluation of total nitrogen loading in the Chesapeake Bay watershed. Water Resources Investigations Report 99–4054: U.S. Geological Survey, Baltimore, Maryland, USA.
[32]  King RS, Baker ME, Whigham DF, Weller DE, Jordan TE, et al. (2005) Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications 15: 137–153.
[33]  Shipley B (2000) Cause and Correlation in Biology: a user's guide to path analysis, structural equations, and causal inference. Cambridge, UK: Cambridge University Press. 317 p.
[34]  Bollen KA, Long JS, editors. (1993) Testing Structural Equation Models. Newbury Park, CA, USA: Sage.
[35]  Arbuckle JL (2010) Amos (version 19). Chicago, IL, USA: IBM SPSS.
[36]  Kaushal SS, Groffman PM, Band LE, Shields CA, Morgan RP, et al. (2008) Interaction between urbanization and climate variability amplifies watershed nitrate export in Maryland. Environmental Science & Technology 42: 5872–5878.
[37]  Howarth RW, Sharpley A, Walker D (2002) Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries 25: 656–676.
[38]  Boyer EW, Goodale CL, Jaworsk NA, Howarth RW (2002) Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 57: 137–169.
[39]  Bundy MH, Breitburg DL, Sellner KG (2003) The responses of Patuxent River upper trophic levels to nutrient and trace element induced changes in the lower food web. Estuaries 26: 365–384.
[40]  Wazniak CE, Hall MR, Carruthers TJB, Sturgis B, Dennison WC, et al. (2007) Linking water quality to living resources in a mid-Atlantic lagoon system, USA. Ecological Applications 17: S64–S78.
[41]  Chesney EJ, Houde ED (1989) Laboratory studies on the effect of hypoxic waters on the survival of eggs and yolk-sac larvae of the bay anchovy, Anchoa mitchilli, 184–191. In Chesney EJ, Houde ED, Newberger TA, Vasquez AV, Zastrow CE, Morin LG, Harvey HR, Gooch JW (eds.) Population Biology of Bay Anchovy in Mid-Chesapeake Bay. Final Report to Maryland Sea Grant Ref. No. (UM-CEES) CBL 89–141. Solomons, Maryland, USA.
[42]  Miller DS, Poucher SL, Coiro L (2002) Determination of lethal dissolved oxygen levels for selected marine and estuarine fishes, crustaceans, and a bivalve. Marine Biology 140: 287–296.
[43]  Esssington TE, Paulson CE (2010) Quantifying hypoxia imapcts on an estuarine demersal community using a hierarchical ensemble approach. Ecosystems 13: 1035–1048.
[44]  Haas K, Kohler U, Diehl S, Kohler P, Dietrich S, et al. (2007) Influence of fish on habitat choice of water birds: A whole system experiment. Ecology 88: 2915–2925.
[45]  Kloskowski J, Nieoczym M, Polak M, Pitucha P (2010) Habitat selection by breeding waterbirds at ponds with size-structured fish populations. Naturwissenschaften 97: 673–682.
[46]  Jung S, Houde ED (2003) Spatial and temporal variabilities of pelagic fish community structure and distribution in Chesapeake Bay, USA. Estuarine and Coastal Shelf Science 58: 335–351.
[47]  Fear JM, Paerl HW, Braddy JS (2007) Importance of submarine groundwater discharge as a source of nutrients for the Neuse River Estuary, North Carolina. Estuaries and Coasts 30: 1027–1033.
[48]  Lawrie RA, Stretch DD, Perissinotto R (2010) The effects of wastewater discharges on the functioning of a small temporarily open/closed estuary. Estuarine Coastal and Shelf Science 87: 237–245.
[49]  King RS, Beaman JR, Whigham DF, Hines AH, Baker ME, et al. (2004) Watershed land use is strongly linked to PCBs in white perch in Chesapeake Bay subestuaries. Environmental Science & Technology 38: 6546–6552.
[50]  Shields CA, Band LE, Law N, Groffman PM, Kaushal SS, et al. (2008) Streamflow distribution of non-point source nitrogen export from urban-rural catchments in the Chesapeake Bay watershed. Water Resources Research 44:
[51]  Somers CM, Lozer MN, Quinn JS (2007) Interactions between double-crested cormorants and herring gulls at a shared breeding site. Waterbirds 30: 241–250.
[52]  Brinker DF, McCann JM, Williams B, Watts BD (2007) Colonial-nesting seabirds in the Chesapeake Bay region: Where have we been and where are we going? Waterbirds 30: 93–104.
[53]  Rudstam LG, VanDeValk AJ, Adams CM, Coleman JTH, Forney JL, et al. (2004) Cormorant predation and the population dynamics of walleye and yellow perch in Oneida lake. Ecological Applications 14: 149–163.
[54]  Ronicke H, Doerffer R, Siewers H, Buttner O, Lindenschmidt KE, et al. (2008) Phosphorus input by nordic geese to the eutrophic Lake Arendsee, Germany. Fundamental and Applied Limnology 172: 111–119.
[55]  Thorpe AS, Stanley AG (2011) Determining appropriate goals for restoration of imperilled communities and species. Journal of Applied Ecology 48: 275–279.
[56]  Lyons JE, Runge MC, Laskowski HP, Kendall WL (2008) Monitoring in the Context of Structured Decision-Making and Adaptive Management. Journal of Wildlife Management 72: 1683–1692.
[57]  Chesapeake Bay Foundation (2010) 2010 State of the Bay. Annapolis, MD, USA: Chesapeake Bay Foundation. Available: Available: http://www.cbf.org. Accessed 1 April 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133