全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Enhancement of Cell Membrane Invaginations, Vesiculation and Uptake of Macromolecules by Protonation of the Cell Surface

DOI: 10.1371/journal.pone.0035204

Full-Text   Cite this paper   Add to My Lib

Abstract:

The different pathways of endocytosis share an initial step involving local inward curvature of the cell’s lipid bilayer. It has been shown that to generate membrane curvature, proteins or lipids enforce transversal asymmetry of the plasma membrane. Thus it emerges as a general phenomenon that transversal membrane asymmetry is the common required element for the formation of membrane curvature. The present study demonstrates that elevating proton concentration at the cell surface stimulates the formation of membrane invaginations and vesiculation accompanied by efficient uptake of macromolecules (Dextran-FITC, 70 kD), relative to the constitutive one. The insensitivity of proton induced uptake to inhibiting treatments and agents of the known endocytic pathways suggests the entry of macromolecules to proceeds via a yet undefined route. This is in line with the fact that neither ATP depletion, nor the lowering of temperature, abolishes the uptake process. In addition, fusion mechanism such as associated with low pH uptake of toxins and viral proteins can be disregarded by employing the polysaccharide dextran as the uptake molecule. The proton induced uptake increases linearly in the extracellular pH range of 6.5 to 4.5, and possesses a steep increase at the range of 4> pH>3, reaching a plateau at pH≤3. The kinetics of the uptake implies that the induced vesicles release their content to the cytosol and undergo rapid recycling to the plasma membrane. We suggest that protonation of the cell’s surface induces local charge asymmetries across the cell membrane bilayer, inducing inward curvature of the cell membrane and consequent vesiculation and uptake.

References

[1]  Doherty GJ, McMahon HT (2009) Mechanisms of Endocytosis. Annu Rev Biochem 78: 857–902.
[2]  Baumgart T, Capraro BR, Zhu C, Das SL (2011) Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu Rev Phys Chem 62: 483–506.
[3]  Graham TR, Kozlov MM (2010) Interplay of proteins and lipids in generating membrane curvature. Curr Opin Cell Biol 22: 430–436.
[4]  Lundmark R, Carlsson SR (2010) Driving membrane curvature in clathrin-dependent and clathrin-independent endocytosis. Semin Cell Dev Biol 21: 363–370.
[5]  McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438: 590–596.
[6]  Lindberg M, Jarvet J, Langel U, Graslund A (2001) Secondary structure and position of the cell-penetrating peptide transportan in SDS micelles as determined by NMR. Biochemistry 40: 3141–3149.
[7]  Zemel A, Fattal DR, Ben-Shaul A (2003) Energetics and self-assembly of amphipathic peptide pores in lipid membranes. Biophys J 84: 2242–2255.
[8]  Zorko M, Langel U (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57: 529–545.
[9]  Sandvig K, van Deurs B (2005) Delivery into cells: lessons learned from plant and bacterial toxins. Gene Ther 12: 865–872.
[10]  Motizuki M, Takei T, Tasaka K, Yokota S, Kojima S, et al. (2004) Low pH facilitates uptake of proteins by cells through a non-endocytic pathway. J Biochem 135: 713–719.
[11]  Kampmann T, Mueller DS, Mark AE, Young PR, Kobe B (2006) The Role of histidine residues in low-pH-mediated viral membrane fusion. Structure 14: 1481–1487.
[12]  Qin ZL, Zheng Y, Kielian M (2009) Role of conserved histidine residues in the low-pH dependence of the Semliki Forest virus fusion protein. J Virol 83: 4670–4677.
[13]  Thoennes S, Li ZN, Lee BJ, Langley WA, Skehel JJ, et al. (2008) Analysis of residues near the fusion peptide in the influenza hemagglutinin structure for roles in triggering membrane fusion. Virology 370: 403–414.
[14]  White J, Helenius A (1980) pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci U S A 77: 3273–3277.
[15]  Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG Structural changes of envelope proteins during alphavirus fusion. Nature 468: 705–708.
[16]  Wagner RC (1976) The effect of tannic acid on electron images of capillary endothelial cell membranes. J Ultrastruct Res 57: 132–139.
[17]  Mosiman VL, Patterson BK, Canterero L, Goolsby CL (1997) Reducing cellular autofluorescence in flow cytometry: an in situ method. Cytometry 30: 151–156.
[18]  Odell LR, Chau N, Mariana A, Graham ME, Robinson PJ, et al. (2009) Azido and diazarinyl analogues of bis-tyrphostin as asymmetrical inhibitors of dynamin GTPase. ChemMedChem 4: 1182–1188.
[19]  Orlandi PA, Fishman PH (1998) Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 141: 905–915.
[20]  Pelkmans L, Puntener D, Helenius A (2002) Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Science 296: 535–539.
[21]  Clague MJ, Thorpe C, Jones AT (1995) Phosphatidylinositol 3-kinase regulation of fluid phase endocytosis. FEBS Lett 367: 272–274.
[22]  Jones AT, Clague MJ (1995) Phosphatidylinositol 3-kinase activity is required for early endosome fusion. Biochem J 311 ( Pt 1): 31–34.
[23]  Holen I, Gordon PB, Stromhaug PE, Berg TO, Fengsrud M, et al. (1995) Inhibition of asialoglycoprotein endocytosis and degradation in rat hepatocytes by protein phosphatase inhibitors. Biochem J 311 ( Pt 1): 317–326.
[24]  Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, et al. (1999) Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 10: 961–974.
[25]  de Figueiredo RC, Soares MJ (2000) Low temperature blocks fluid-phase pinocytosis and receptor-mediated endocytosis in Trypanosoma cruzi epimastigotes. Parasitol Res 86: 413–418.
[26]  Iacopetta BJ, Morgan EH (1983) The kinetics of transferrin endocytosis and iron uptake from transferrin in rabbit reticulocytes. J Biol Chem 258: 9108–9115.
[27]  Muir EM, Bowyer DE (1983) Dependence of fluid-phase pinocytosis in arterial smooth-muscle cells on temperature, cellular ATP concentration and the cytoskeletal system. Biochem J 216: 467–473.
[28]  Pratten MK, Lloyd JB (1979) Effects of temperature, metabolic inhibitors and some other factors on fluid-phase and adsorptive pinocytosis by rat peritoneal macrophages. Biochem J 180: 567–571.
[29]  Weigel PH, Oka JA (1981) Temperature dependence of endocytosis mediated by the asialoglycoprotein receptor in isolated rat hepatocytes. Evidence for two potentially rate-limiting steps. J Biol Chem 256: 2615–2617.
[30]  Sandvig K, Olsnes S, Petersen OW, van Deurs B (1987) Acidification of the cytosol inhibits endocytosis from coated pits. J Cell Biol 105: 679–689.
[31]  Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, et al. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106: 761–771.
[32]  Anderle P, Niederer E, Rubas W, Hilgendorf C, Spahn-Langguth H, et al. (1998) P-Glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J Pharm Sci 87: 757–762.
[33]  Prego C, Garcia M, Torres D, Alonso MJ (2005) Transmucosal macromolecular drug delivery. J Control Release 101: 151–162.
[34]  Mas-Oliva J, Nayler WG (1980) The effect of verapamil on the Ca2+-transporting and Ca2+-ATPase activity of isolated cardiac sarcolemmal preparations. Br J Pharmacol 70: 617–624.
[35]  Orlowski S, Mir LM, Belehradek J Jr, Garrigos M (1996) Effects of steroids and verapamil on P-glycoprotein ATPase activity: progesterone, desoxycorticosterone, corticosterone and verapamil are mutually non-exclusive modulators. Biochem J 317 ( Pt 2): 515–522.
[36]  Senior AE, Nadanaciva S, Weber J (2002) The molecular mechanism of ATP synthesis by F1F0-ATP synthase. Biochim Biophys Acta 1553: 188–211.
[37]  Kozlov MM, McMahon HT, Chernomordik LV (2010) Protein-driven membrane stresses in fusion and fission. Trends Biochem Sci 35: 699–706.
[38]  Huotari V, Vaaraniemi J, Lehto VP, Eskelinen S (1996) Regulation of the disassembly/assembly of the membrane skeleton in Madin-Darby canine kidney cells. J Cell Physiol 167: 121–130.
[39]  Amyere M, Mettlen M, Van Der Smissen P, Platek A, Payrastre B, et al. (2002) Origin, originality, functions, subversions and molecular signalling of macropinocytosis. Int J Med Microbiol 291: 487–494.
[40]  Stan RV (2005) Structure of caveolae. Biochim Biophys Acta 1746: 334–348.
[41]  Kirkham M, Fujita A, Chadda R, Nixon SJ, Kurzchalia TV, et al. (2005) Ultrastructural identification of uncoated caveolin-independent early endocytic vehicles. J Cell Biol 168: 465–476.
[42]  Sandvig K, Torgersen ML, Raa HA, van Deurs B (2008) Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochem Cell Biol 129: 267–276.
[43]  Dai J, Ting-Beall HP, Sheetz MP (1997) The secretion-coupled endocytosis correlates with membrane tension changes in RBL 2H3 cells. J Gen Physiol 110: 1–10.
[44]  DeCoursey TE (2008) Voltage-gated proton channels: what’s next? J Physiol 586: 5305–5324.
[45]  Garlid KD, Paucek P (2003) Mitochondrial potassium transport: the K(+) cycle. Biochim Biophys Acta 1606: 23–41.
[46]  Kaasik A, Safiulina D, Zharkovsky A, Veksler V (2007) Regulation of mitochondrial matrix volume. Am J Physiol Cell Physiol 292: C157–163.
[47]  Matsuyama S, Reed JC (2000) Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ 7: 1155–1165.
[48]  Helfrich W (1973) Elastic properties of lipid bilayers: Theory and possible experiments. Z Naturforsch 28c: 693–703.
[49]  Sheetz MP, Singer SJ (1974) Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc Natl Acad Sci U S A 71: 4457–4461.
[50]  Winterhalter M, Helfrich W (1988) Effect of surface charge on the curvature elasticity of membranes. J Phys Chem 92: 6865.
[51]  Thaokar RM, Deshmukh SD (2010) Rayleigh instability of charged drops and vesicles in the presence of counterions. PHYSICS OF FLUIDS 22:
[52]  Galatola P (2005) Tube formation and spontaneous budding in a fluid charged membrane. Phys Rev E Stat Nonlin Soft Matter Phys 72: 041930.
[53]  Kozlov MM, Winterhalter M, Lerche D (1992) Elastic properties of strongly curved interfaces. Effect of electric surface charge. J Phys II France 2: 175–185.
[54]  Lerche D, Kozlov MM, Markin VS (1987) Electrostatic free energy and spontaneous curvature of spherical charged layered membrane. Biorheology 24: 23–34.
[55]  Janmey PA, Kinnunen PK (2006) Biophysical properties of lipids and dynamic membranes. Trends Cell Biol 16: 538–546.
[56]  Li Y, Ha BY (2005) Molecular theory of asymmetrically charged bilayers: Preferred curvatures. Europhys Lett 70: 411–417.
[57]  Lim HWG, Wortis M, Mukhopadhyay R (2002) Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer- couple hypothesis from membrane mechanics. Proc Natl Acad Sci U S A 99: 16766–16769.
[58]  Safran SA (1994) Statistical Thermodynamics of Surfaces, Interfaces, and Membranes: Addison-Wesley.
[59]  Hauser H (1989) Mechanism of spontaneous vesiculation. Proc Nati Acad Sci USA 86: 5351–5355.
[60]  Khalifat N, Puff N, Bonneau S, Fournier JB, Angelova MI (2008) Membrane deformation under local pH gradient: mimicking mitochondrial cristae dynamics. Biophys J 95: 4924–4933.
[61]  Martin WC, Musgrore A, Kotochigova S, Sansonetti JE (2010) Ground level and ionization energies for the neutral atomes. NIST.
[62]  Petelska AD, Figaszewski ZA (2006) Interfacial tension of phosphatidylcholine-phosphatidylserine system in bilayer lipid membrane. Biophys Chem 120: 199–206.
[63]  Petelska AD, Figaszewski ZA (2002) Effect of pH on the interfacial tension of bilayer lipid membrane formed from phosphatidylcholine or phosphatidylserine. Biochim Biophys Acta 1561: 135–146.
[64]  Zhou Y, Raphael RM (2007) Solution pH alters mechanical and electrical properties of phosphatidylcholine membranes: relation between interfacial electrostatics, intramembrane potential, and bending elasticity. Biophys J 92: 2451–2462.
[65]  Petrache HI, Zemb T, Belloni L, Parsegian VA (2006) Salt screening and specific ion adsorption determine neutral-lipid membrane interactions. Proc Natl Acad Sci U S A 103: 7982–7987.
[66]  Schnitzer JE (1988) Glycocalyx electrostatic potential profile analysis: ion, pH, steric, and charge effects. Yale J Biol Med 61: 427–446.
[67]  Chatton JY, Spring KR (1994) Acidic pH of the lateral intercellular spaces of MDCK cells cultured on permeable supports. J Membr Biol 140: 89–99.
[68]  Harris PJ, Chatton JY, Tran PH, Bungay PM, Spring KR (1994) pH, morphology, and diffusion in lateral intercellular spaces of epithelial cell monolayers. Am J Physiol 266: C73–80.
[69]  Baumgart T, Hess ST, Webb WW (2003) Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425: 821–824.
[70]  Julicher F, Lipowsky R (1993) Domain-induced budding of vesicles. Phys Rev Lett 70: 2964–2967.
[71]  Gandhavadi M, Allende D, Vidal A, Simon SA, McIntosh TJ (2002) Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. Biophys J 82: 1469–1482.
[72]  Yuan C, Furlong J, Burgos P, Johnston LJ (2002) The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes. Biophys J 82: 2526–2535.
[73]  Kuzmin PI, Akimov SA, Chizmadzhev YA, Zimmerberg J, Cohen FS (2005) Line tension and interaction energies of membrane rafts calculated from lipid splay and tilt. Biophys J 88: 1120–1133.
[74]  Hanzal-Bayer MF, Hancock JF (2007) Lipid rafts and membrane traffic. FEBS Lett 581: 2098–2104.
[75]  Lipowsky R (2002) Domains and Rafts in Membranes – Hidden Dimensions of Self organization. Journal of Biological Physics 28: 195–210.
[76]  Chernomordik L, Kozlov MM, Zimmerberg J (1995) Lipids in biological membrane fusion. J Membr Biol 146: 1–14.
[77]  Allain JM, Storm C, Roux A, Ben Amar M, Joanny JF (2004) Fission of a multiphase membrane tube. Phys Rev Lett 93: 158104.
[78]  Liu J, Kaksonen M, Drubin DG, Oster G (2006) Endocytic vesicle scission by lipid phase boundary forces. Proc Natl Acad Sci U S A 103: 10277–10282.
[79]  Lesuffleur T, Barbat A, Dussaulx E, Zweibaum A (1990) Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res 50: 6334–6343.
[80]  Caro I, Boulenc X, Rousset M, Meunier V, Bourric M, et al. (1995) Characterisation of a newly isolated Caco-2 clone (TC-7), as a model of transport processes and biotransformation of drugs. International Journal of Pharmaceutics 116: 147–158.
[81]  Rink TJ, Tsien RY, Pozzan T (1982) Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol 95: 189–196.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133