An increasing body of evidence suggests that alterations in neurogenesis and oxidative stress are associated with a wide variety of CNS diseases, including Alzheimer’s disease, schizophrenia and Parkinson’s disease, as well as routine loss of function accompanying aging. Interestingly, the association between neurogenesis and the production of reactive oxidative species (ROS) remains largely unexamined. The adult CNS harbors two regions of persistent lifelong neurogenesis: the subventricular zone and the dentate gyrus (DG). These regions contain populations of quiescent neural stem cells (NSCs) that generate mature progeny via rapidly-dividing progenitor cells. We hypothesized that the energetic demands of highly proliferative progenitors generates localized oxidative stress that contributes to ROS-mediated damage within the neuropoietic microenvironment. In vivo examination of germinal niches in adult rodents revealed increases in oxidized DNA and lipid markers, particularly in the subgranular zone (SGZ) of the dentate gyrus. To further pinpoint the cell types responsible for oxidative stress, we employed an in vitro cell culture model allowing for the synchronous terminal differentiation of primary hippocampal NSCs. Inducing differentiation in primary NSCs resulted in an immediate increase in total mitochondria number and overall ROS production, suggesting oxidative stress is generated during a transient window of elevated neurogenesis accompanying normal neurogenesis. To confirm these findings in vivo, we identified a set of oxidation-responsive genes, which respond to antioxidant administration and are significantly elevated in genetic- and exercise-induced model of hyperactive hippocampal neurogenesis. While no direct evidence exists coupling neurogenesis-associated stress to CNS disease, our data suggest that oxidative stress is produced as a result of routine adult neurogenesis.
References
[1]
Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262: 689–695.
[2]
Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest 111: 785–793.
[3]
Alam ZI, Jenner A, Daniel SE, Lees AJ, Cairns N, et al. (1997) Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J Neurochem 69: 1196–1203.
[4]
Taupin P (2010) A dual activity of ROS and oxidative stress on adult neurogenesis and Alzheimer’s disease. Cent Nerv Syst Agents Med Chem 10: 16–21.
[5]
Bitanihirwe BK, Woo TU (2011) Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 35: 878–893.
[6]
Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23: 134–147.
[7]
Clay HB, Sillivan S, Konradi C (2011) Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 29: 311–324.
[8]
Sugawara T, Chan PH (2003) Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxid Redox Signal 5: 597–607.
[9]
Ince PG, Shaw PJ, Candy JM, Mantle D, Tandon L, et al. (1994) Iron, selenium and glutathione peroxidase activity are elevated in sporadic motor neuron disease. Neurosci Lett 182: 87–90.
[10]
Acharya MM, Lan ML, Kan VH, Patel NH, Giedzinski E, et al. (2010) Consequences of ionizing radiation-induced damage in human neural stem cells. Free Radic Biol Med 49: 1846–1855.
Moser KV, Reindl M, Blasig I, Humpel C (2004) Brain capillary endothelial cells proliferate in response to NGF, express NGF receptors and secrete NGF after inflammation. Brain Res 1017: 53–60.
[13]
Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, et al. (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330: 841–845.
[14]
Curtis MA, Kam M, Faull RL (2011) Neurogenesis in humans. Eur J Neurosci 33: 1170–1174.
[15]
Li Y, Mu Y, Gage FH (2009) Development of neural circuits in the adult hippocampus. Curr Top Dev Biol 87: 149–174.
[16]
Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, et al. (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 101: 343–347.
[17]
Babu H, Claasen JH, Kannan S, Runker AE, Palmer T, et al. (2011) A protocol for isolation and enriched monolayer cultivation of neural precursor cells from mouse dentate gyrus. Front Neurosci 5: 89.
[18]
van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2: 266–270.
[19]
Scheffler B, Walton NM, Lin DD, Goetz AK, Enikolopov G, et al. (2005) Phenotypic and functional characterization of adult brain neuropoiesis. Proc Natl Acad Sci U S A 102: 9353–9358.
Zalba G, San Jose G, Moreno MU, Fortuno A, Diez J (2005) NADPH oxidase-mediated oxidative stress: genetic studies of the p22(phox) gene in hypertension. Antioxid Redox Signal 7: 1327–1336.
[22]
Anantharam V, Lehrmann E, Kanthasamy A, Yang Y, Banerjee P, et al. (2007) Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: relevance to oxidative damage in Parkinson’s disease. Neurochem Int 50: 834–847.
[23]
Wang X, Zaidi A, Pal R, Garrett AS, Braceras R, et al. (2009) Genomic and biochemical approaches in the discovery of mechanisms for selective neuronal vulnerability to oxidative stress. BMC Neurosci 10: 12.
[24]
van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25: 8680–8685.
[25]
Silva AJ, Paylor R, Wehner JM, Tonegawa S (1992) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257: 206–211.
[26]
Yamasaki N, Maekawa M, Kobayashi K, Kajii Y, Maeda J, et al. (2008) Alpha-CaMKII deficiency causes immature dentate gyrus, a novel candidate endophenotype of psychiatric disorders. Mol Brain 1: 6.
[27]
Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci U S A 96: 11619–11624.
[28]
Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97: 703–716.
[29]
Dimri GP, Lee X, Basile G, Acosta M, Scott G, et al. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92: 9363–9367.
[30]
Beal MF (2005) Oxidative damage as an early marker of Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 26: 585–586.
[31]
Adibhatla RM, Hatcher JF (2008) Phospholipase A(2), reactive oxygen species, and lipid peroxidation in CNS pathologies. BMB Rep 41: 560–567.
[32]
Che Y, Wang JF, Shao L, Young T (2010) Oxidative damage to RNA but not DNA in the hippocampus of patients with major mental illness. J Psychiatry Neurosci 35: 296–302.
[33]
Lovell MA, Markesbery WR (2007) Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res 85: 3036–3040.
[34]
Bradley MA, Xiong-Fister S, Markesbery WR, Lovell MA (2010) Elevated 4-hydroxyhexenal in Alzheimer’s disease (AD) progression. Neurobiol Aging.
[35]
Studer L, Csete M, Lee SH, Kabbani N, Walikonis J, et al. (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20: 7377–7383.
[36]
Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10: 187–198.
[37]
Scott ID, Nicholls DG (1980) Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ. Biochem J 186: 21–33.
[38]
Fiskum G, Rosenthal RE, Vereczki V, Martin E, Hoffman GE, et al. (2004) Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J Bioenerg Biomembr 36: 347–352.
[39]
Moh C, Kubiak JZ, Bajic VP, Zhu X, Smith MA, et al. (2011) Cell cycle deregulation in the neurons of Alzheimer’s disease. Results Probl Cell Differ 53: 565–576.
[40]
Yang AH, Kaushal D, Rehen SK, Kriedt K, Kingsbury MA, et al. (2003) Chromosome segregation defects contribute to aneuploidy in normal neural progenitor cells. J Neurosci 23: 10454–10462.
[41]
Rehen SK, Yung YC, McCreight MP, Kaushal D, Yang AH, et al. (2005) Constitutional aneuploidy in the normal human brain. J Neurosci 25: 2176–2180.
[42]
Vescovi AL, Galli R, Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6: 425–436.
[43]
Gallagher J, Howlin J, McCarthy C, Murphy EP, Bresnihan B, et al. (2003) Identification of Naf1/ABIN-1 among TNF-alpha-induced expressed genes in human synoviocytes using oligonucleotide microarrays. FEBS Lett 551: 8–12.
[44]
Chen SC, Guh JY, Chen HC, Yang YL, Huang JS, et al. (2007) Advanced glycation end-product-induced mitogenesis is dependent on Janus kinase 2-induced heat shock protein 70 in normal rat kidney interstitial fibroblast cells. Transl Res 149: 274–281.
[45]
Kannan K, Jain SK (2000) Oxidative stress and apoptosis. Pathophysiology 7: 153–163.
[46]
Chen QM, Liu J, Merrett JB (2000) Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblasts. Biochem J 347: 543–551.
[47]
Madhavan L, Ourednik V, Ourednik J (2005) Grafted neural stem cells shield the host environment from oxidative stress. Ann N Y Acad Sci 1049: 185–188.
[48]
Pero RW, Anderson MW, Doyle GA, Anna CH, Romagna F, et al. (1990) Oxidative stress induces DNA damage and inhibits the repair of DNA lesions induced by N-acetoxy-2-acetylaminofluorene in human peripheral mononuclear leukocytes. Cancer Res 50: 4619–4625.
[49]
Silva AJ, Stevens CF, Tonegawa S, Wang Y (1992) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257: 201–206.