全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2012 

Functional Characterization of Circulating Tumor Cells with a Prostate-Cancer-Specific Microfluidic Device

DOI: 10.1371/journal.pone.0035976

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cancer metastasis accounts for the majority of cancer-related deaths owing to poor response to anticancer therapies. Molecular understanding of metastasis-associated drug resistance remains elusive due to the scarcity of available tumor tissue. Isolation of circulating tumor cells (CTCs) from the peripheral blood of patients has emerged as a valid alternative source of tumor tissue that can be subjected to molecular characterization. However, issues with low purity and sensitivity have impeded adoption to clinical practice. Here we report a novel method to capture and molecularly characterize CTCs isolated from castrate-resistant prostate cancer patients (CRPC) receiving taxane chemotherapy. We have developed a geometrically enhanced differential immunocapture (GEDI) microfluidic device that combines an anti-prostate specific membrane antigen (PSMA) antibody with a 3D geometry that captures CTCs while minimizing nonspecific leukocyte adhesion. Enumeration of GEDI-captured CTCs (defined as intact, nucleated PSMA+/CD45? cells) revealed a median of 54 cells per ml identified in CRPC patients versus 3 in healthy donors. Direct comparison with the commercially available CellSearch? revealed a 2–400 fold higher sensitivity achieved with the GEDI device. Confocal microscopy of patient-derived GEDI-captured CTCs identified the TMPRSS2:ERG fusion protein, while sequencing identified specific androgen receptor point mutation (T868A) in blood samples spiked with only 50 PC C4-2 cells. On-chip treatment of patient-derived CTCs with docetaxel and paclitaxel allowed monitoring of drug-target engagement by means of microtubule bundling. CTCs isolated from docetaxel-resistant CRPC patients did not show any evidence of drug activity. These measurements constitute the first functional assays of drug-target engagement in living circulating tumor cells and therefore have the potential to enable longitudinal monitoring of target response and inform the development of new anticancer agents.

References

[1]  Maheswaran S, Haber DA (2010) Circulating tumor cells: a window into cancer biology and metastasis. Current opinion in genetics & development 20: 96–99.
[2]  Zieglschmid V, Hollmann C, Bocher O (2005) Detection of disseminated tumor cells in peripheral blood. Critical reviews in clinical laboratory sciences 42: 155–196.
[3]  Racila E, Euhus D, Weiss AJ, Rao C, McConnell J, et al. (1998) Detection and characterization of carcinoma cells in the blood. Proceedings of the National Academy of Sciences of the United States of America 95: 4589–4594.
[4]  Krivacic RT, Ladanyi A, Curry DN, Hsieh HB, Kuhn P, et al. (2004) A rare-cell detector for cancer. Proceedings of the National Academy of Sciences of the United States of America 101: 10501–10504.
[5]  Pantel K, Brakenhoff RH, Brandt B (2008) Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nature reviews Cancer 8: 329–340.
[6]  Riethdorf S, Pantel K (2010) Advancing personalized cancer therapy by detection and characterization of circulating carcinoma cells. Annals of the New York Academy of Sciences 1210: 66–77.
[7]  Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, et al. (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450: 1235–1239.
[8]  Stott SL, Hsu CH, Tsukrov DI, Yu M, Miyamoto DT, et al. (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America 107: 18392–18397.
[9]  Stott SL, Lee RJ, Nagrath S, Yu M, Miyamoto DT, et al. (2010) Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Science translational medicine 2: 25ra23.
[10]  Gleghorn JP, Pratt ED, Denning D, Liu H, Bander NH, et al. (2010) Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab on a chip 10: 27–29.
[11]  Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, et al. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.
[12]  Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature reviews Cancer 9: 265–273.
[13]  Munz M, Baeuerle PA, Gires O (2009) The emerging role of EpCAM in cancer and stem cell signaling. Cancer research 69: 5627–5629.
[14]  Gostner JM, Fong D, Wrulich OA, Lehne F, Zitt M, et al. (2011) Effects of EpCAM overexpression on human breast cancer cell lines. BMC cancer 11: 45.
[15]  Gradilone A, Raimondi C, Nicolazzo C, Petracca A, Gandini O, et al. (2011) Circulating tumour cells lacking cytokeratin in breast cancer: the importance of being mesenchymal. Journal of cellular and molecular medicine 15: 1066–1070.
[16]  Coumans FA, Doggen CJ, Attard G, de Bono JS, Terstappen LW (2010) All circulating EpCAM+CK+CD45? objects predict overall survival in castration-resistant prostate cancer. Annals of oncology : official journal of the European Society for Medical Oncology/ESMO 21: 1851–1857.
[17]  Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Anand A, et al. (2007) Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 13: 7053–7058.
[18]  Scher HI, Jia X, de Bono JS, Fleisher M, Pienta KJ, et al. (2009) Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. The lancet oncology 10: 233–239.
[19]  Veldscholte J, Ris-Stalpers C, Kuiper GG, Jenster G, Berrevoets C, et al. (1990) A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochemical and biophysical research communications 173: 534–540.
[20]  Park K, Tomlins SA, Mudaliar KM, Chiu YL, Esgueva R, et al. (2010) Antibody-based detection of ERG rearrangement-positive prostate cancer. Neoplasia 12: 590–598.
[21]  de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, et al. (2010) Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 376: 1147–1154.
[22]  Petrylak DP, Tangen CM, Hussain MH, Lara PN Jr, Jones JA, et al. (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. The New England journal of medicine 351: 1513–1520.
[23]  Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, et al. (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. The New England journal of medicine 351: 1502–1512.
[24]  Marcus AI, Peters U, Thomas SL, Garrett S, Zelnak A, et al. (2005) Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive cancer cells. The Journal of biological chemistry 280: 11569–11577.
[25]  Extra JM, Rousseau F, Bruno R, Clavel M, Le Bail N, et al. (1993) Phase I and pharmacokinetic study of Taxotere (RP 56976; NSC 628503) given as a short intravenous infusion. Cancer research 53: 1037–1042.
[26]  Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. The Journal of cell biology 192: 373–382.
[27]  Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, et al. (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. The New England journal of medicine 351: 781–791.
[28]  Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, et al. (2008) Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 26: 3213–3221.
[29]  de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, et al. (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 14: 6302–6309.
[30]  Wicha MS, Hayes DF (2011) Circulating tumor cells: not all detected cells are bad and not all bad cells are detected. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29: 1508–1511.
[31]  Attard G, de Bono JS (2011) Utilizing circulating tumor cells: challenges and pitfalls. Current opinion in genetics & development 21: 50–58.
[32]  Harris L, Fritsche H, Mennel R, Norton L, Ravdin P, et al. (2007) American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 25: 5287–5312.
[33]  Danila DC, Fleisher M, Scher HI (2011) Circulating tumor cells as biomarkers in prostate cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 17: 3903–3912.
[34]  Haber DA, Gray NS, Baselga J (2011) The evolving war on cancer. Cell 145: 19–24.
[35]  Bander NH, Nanus DM, Milowsky MI, Kostakoglu L, Vallabahajosula S, et al. (2003) Targeted systemic therapy of prostate cancer with a monoclonal antibody to prostate-specific membrane antigen. Seminars in oncology 30: 667–676.
[36]  Horoszewicz JS, Kawinski E, Murphy GP (1987) Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients. Anticancer research 7: 927–935.
[37]  Israeli RS, Powell CT, Corr JG, Fair WR, Heston WD (1994) Expression of the prostate-specific membrane antigen. Cancer research 54: 1807–1811.
[38]  Israeli RS, Miller WH Jr, Su SL, Powell CT, Fair WR, et al. (1994) Sensitive nested reverse transcription polymerase chain reaction detection of circulating prostatic tumor cells: comparison of prostate-specific membrane antigen and prostate-specific antigen-based assays. Cancer research 54: 6306–6310.
[39]  Ananias HJ, van den Heuvel MC, Helfrich W, de Jong IJ (2009) Expression of the gastrin-releasing peptide receptor, the prostate stem cell antigen and the prostate-specific membrane antigen in lymph node and bone metastases of prostate cancer. The Prostate 69: 1101–1108.
[40]  Sweat SD, Pacelli A, Murphy GP, Bostwick DG (1998) Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology 52: 637–640.
[41]  Wright GL Jr, Grob BM, Haley C, Grossman K, Newhall K, et al. (1996) Upregulation of prostate-specific membrane antigen after androgen-deprivation therapy. Urology 48: 326–334.
[42]  Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, et al. (1999) Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer research 59: 3192–3198.
[43]  Silver DA, Pellicer I, Fair WR, Heston WD, Cordon-Cardo C (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clinical cancer research : an official journal of the American Association for Cancer Research 3: 81–85.
[44]  Haffner MC, Kronberger IE, Ross JS, Sheehan CE, Zitt M, et al. (2009) Prostate-specific membrane antigen expression in the neovasculature of gastric and colorectal cancers. Human pathology 40: 1754–1761.
[45]  Akhtar NH, Pail O, Saran A, Tyrell L, Tagawa ST (2012) Prostate-specific membrane antigen-based therapeutics. Adv Urol 2012: 973820.
[46]  Scher HI, Jia X, Chi K, de Wit R, Berry WR, et al. (2011) Randomized, open-label phase III trial of docetaxel plus high-dose calcitriol versus docetaxel plus prednisone for patients with castration-resistant prostate cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29: 2191–2198.
[47]  Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, et al. (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310: 644–648.
[48]  Clark J, Attard G, Jhavar S, Flohr P, Reid A, et al. (2008) Complex patterns of ETS gene alteration arise during cancer development in the human prostate. Oncogene 27: 1993–2003.
[49]  Attard G, Jameson C, Moreira J, Flohr P, Parker C, et al. (2009) Hormone-sensitive prostate cancer: a case of ETS gene fusion heterogeneity. Journal of clinical pathology 62: 373–376.
[50]  Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, et al. (2004) Circulating tumor cells in patients with breast cancer dormancy. Clinical cancer research : an official journal of the American Association for Cancer Research 10: 8152–8162.
[51]  Komlodi-Pasztor E, Sackett D, Wilkerson J, Fojo T (2011) Mitosis is not a key target of microtubule agents in patient tumors. Nature reviews Clinical oncology 8: 244–250.
[52]  Jordan MA, Wilson L (2004) Microtubules as a target for anticancer drugs. Nature reviews Cancer 4: 253–265.
[53]  McDaid HM, Mani S, Shen HJ, Muggia F, Sonnichsen D, et al. (2002) Validation of the pharmacodynamics of BMS-247550, an analogue of epothilone B, during a phase I clinical study. Clinical cancer research : an official journal of the American Association for Cancer Research 8: 2035–2043.
[54]  Darshan MS, Loftus MS, Thadani-Mulero M, Levy BP, Escuin D, et al. (2011) Taxane-Induced Blockade to Nuclear Accumulation of the Androgen Receptor Predicts Clinical Responses in Metastatic Prostate Cancer. Cancer research.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133