Ebola virus (EBOV) is the causative agent of severe hemorrhagic fever in primates, with human case fatality rates up to 90%. Today, there is neither a licensed vaccine nor a treatment available for Ebola hemorrhagic fever (EHF). Single monoclonal antibodies (MAbs) specific for Zaire ebolavirus (ZEBOV) have been successfully used in passive immunization experiments in rodent models, but have failed to protect nonhuman primates from lethal disease. In this study, we used two clones of human-mouse chimeric MAbs (ch133 and ch226) with strong neutralizing activity against ZEBOV and evaluated their protective potential in a rhesus macaque model of EHF. Reduced viral loads and partial protection were observed in animals given MAbs ch133 and ch226 combined intravenously at 24 hours before and 24 and 72 hours after challenge. MAbs circulated in the blood of a surviving animal until virus-induced IgG responses were detected. In contrast, serum MAb concentrations decreased to undetectable levels at terminal stages of disease in animals that succumbed to infection, indicating substantial consumption of these antibodies due to virus replication. Accordingly, the rapid decrease of serum MAbs was clearly associated with increased viremia in non-survivors. Our results indicate that EBOV neutralizing antibodies, particularly in combination with other therapeutic strategies, might be beneficial in reducing viral loads and prolonging disease progression during EHF.
References
[1]
Sanchez A, Geisbert TW, Feldmann H (2007) Filoviridae: Marburg and Ebola Viruses. In: Knipe DM, Howley PM, editors. Fields Virology 5th edition. Philadelphia: Lippincott-Williams & Wilkins. pp. 1409–1448.
[2]
Towner JS, Sealy TK, Khristova ML, Albari?o CG, Conlan S, et al. (2008) Newly discovered Ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog 4: e1000212.
[3]
Bente D, Gren J, Strong JE, Feldmann H (2009) Disease modeling for Ebola and Marburg viruses. Dis Model Mech 2: 12–17.
[4]
Takada A, Robison C, Goto H, Sanchez A, Murti KG, et al. (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94: 14764–14769.
[5]
Wool-Lewis RJ, Bates P (1998) Characterization of Ebola virus entry by using pseudotyped viruses: identification of receptor-deficient cell lines. J Virol 72: 3155–3160.
[6]
Geisbert TW, Hensley LE (2004) Ebola virus: new insights into disease aetiopathology and possible therapeutic interventions. Expert Rev Mol Med 6: 1–24.
[7]
Matsuno K, Takada A (2007) Antibody therapy as a future treatment option for Ebola virus infection. Future Virol 2: 607–614.
Takada A, Feldmann H, Ksiazek TG, Kawaoka Y (2003) Antibody-dependent enhancement of Ebola virus infection. J Virol 77: 7539–7544.
[10]
Takada A, Ebihara H, Feldmann F, Geisbert TW, Kawaoka Y (2007) Epitopes required for antibody-dependent enhancement of Ebola virus infection. J Infect Dis 196: Suppl. 2S347–356.
[11]
Nakayama E, Tomabechi D, Matsuno K, Kishida N, Yoshida R, et al. (2011) Antibody-dependent enhancement of Marburg virus infection. J Infect Dis Suppl 3: S978–985.
[12]
Takada A, Kawaoka Y (2003) Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol 13: 387–398.
[13]
Maruyama T, Rodriguez LL, Jahrling PB, Sanchez A, Khan AS, et al. (1999) Ebola virus can be effectively neutralized by antibody produced in natural human infection. J Virol 73: 6024–6030.
[14]
Wilson JA, Hevey M, Bakken R, Guest S, Bray M, et al. (2000) Epitopes involved in antibody-mediated protection from Ebola virus. Science 287: 1664–1666.
[15]
Takada A, Feldmann H, Stroeher U, Bray M, Watanabe S, et al. (2003) Identification of protective epitopes on Ebola virus glycoprotein at the single amino acid level by using recombinant vesicular stomatitis viruses, J Virol 77: 1069–1074.
[16]
Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, et al. (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454: 177–182.
[17]
Parren PW, Geisbert TW, Maruyama T, Jahrling PB, Burton DR (2002) Pre- and postexposure prophylaxis of Ebola virus infection in an animal model by passive transfer of a neutralizing human antibody. J Virol 76: 6408–6412.
[18]
Oswald WB, Geisbert TW, Davis KJ, Geisbert JB, Sullivan NJ, et al. (2007) Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys. PLoS Pathog 3: e9.
[19]
Takada A, Ebihara H, Jones S, Feldmann H, Kawaoka Y (2007) Protective efficacy of neutralizing antibodies against Ebola virus infection. Vaccine 25: 993–999.
[20]
Ebihara H, Yoshimatsu K, Ogino M, Araki K, Ami Y, et al. (2000) Pathogenicity of Hantaan virus in newborn mice: genetic reassortant study demonstrating that a single amino acid change in glycoprotein G1 is related to virulence. J Virol 74: 9245–55.
[21]
Volchkov VE, Becker S, Volchkova VA, Ternovoj VA, Kotov AN, et al. (1995) GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214: 421–430.
[22]
Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST (1996) The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A 93: 3602–3607.
[23]
Ito H, Watanabe S, Takada A, Kawaoka Y (2001) Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol 75: 1576–1580.
[24]
Mehedi M, Falzarano D, Seebach J, Hu X, Carpenter MS, et al. (2011) A new Ebola virus nonstructural glycoprotein expressed through RNA editing. J Virol 85: 5406–5414.
[25]
Dolnik O, Volchkova V, Garten W, Carbonnelle C, Becker S, et al. (2004) Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO J 23: 2175–2184.
[26]
Zhang M, Koskie K, Ross JS, Kayser KJ, Caple MV (2010) Enhancing glycoprotein sialylation by targeted gene silencing in mammalian cells. Biotechnol Bioeng 105: 1094–1105.
[27]
Takada A (2012) Filovirus tropism: Cellular molecules for viral entry. Front Microbio 3: 34.
[28]
Shedlock DJ, Bailey MA, Popernack PM, Cunningham JM, Burton DR, et al. (2010) Antibody-mediated neutralization of Ebola virus can occur by two distinct mechanisms. Virology 401: 228–235.
[29]
Dias JM, Kuehne AI, Abelson DM, Bale S, Wong AC, et al. (2011) A shared structural solution for neutralizing Ebolaviruses. Nat Struct Mol Biol 18: 1424–1427.
Sullivan NJ, Geisbert TW, Geisbert JB, Shedlock DJ, Xu L, et al. (2006) Immune protection of nonhuman primates against Ebola virus with single low-dose adenovirus vectors encoding modified GPs. PLoS Med 3: e177.
[32]
Takada A, Kawaoka Y (2001) The pathogenesis of Ebola hemorrhagic fever. Trends Microbiol 9: 506–511.
[33]
Brining DL, Mattoon JS, Kercher L, LaCasse RA, Safronetz D, et al. (2010) Thoracic radiography as a refinement methodology for the study of H1N1 influenza in cynomologus macaques (Macaca fascicularis). Comp Med 60: 389–395.
[34]
Nakayama E, Yokoyama A, Miyamoto H, Igarashi M, Kishida N, et al. (2010) Enzyme-linked immunosorbent assay for detection of filovirus species-specific antibodies. Clin Vaccine Immunol 17: 1723–1728.
[35]
Saijo M, Niikura M, Morikawa S, Ksiazek TG, Meyer RF, et al. (2001) Enzyme-linked immunosorbent assays for detection of antibodies to Ebola and Marburg viruses using recombinant nucleoproteins. J Clin Microbiol 39: 1–7.
[36]
Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hyg 27: 493–497.