In the United States, serogroup Y, ST-23 clonal complex Neisseria meningitidis was responsible for an increase in meningococcal disease incidence during the 1990s. This increase was accompanied by antigenic shift of three outer membrane proteins, with a decrease in the population that predominated in the early 1990s as a different population emerged later in that decade. To understand factors that may have been responsible for the emergence of serogroup Y disease, we used whole genome pyrosequencing to investigate genetic differences between isolates from early and late N. meningitidis populations, obtained from meningococcal disease cases in Maryland in the 1990s. The genomes of isolates from the early and late populations were highly similar, with 1231 of 1776 shared genes exhibiting 100% amino acid identity and an average πN = 0.0033 and average πS = 0.0216. However, differences were found in predicted proteins that affect pilin structure and antigen profile and in predicted proteins involved in iron acquisition and uptake. The observed changes are consistent with acquisition of new alleles through horizontal gene transfer. Changes in antigen profile due to the genetic differences found in this study likely allowed the late population to emerge due to escape from population immunity. These findings may predict which antigenic factors are important in the cyclic epidemiology of meningococcal disease.
References
[1]
Harrison LH, Trotter CL, Ramsay ME (2009) Global epidemiology of meningococcal disease. Vaccine 27: Suppl 2B51–63.
[2]
Harrison LH, Jolley KA, Shutt KA, Marsh JW, O'Leary M, et al. (2006) Antigenic shift and increased incidence of meningococcal disease. J Infect Dis 193: 1266–1274.
[3]
Jackson LA, Wenger JD (1993) Laboratory-based surveillance for meningococcal disease in selected areas, United States, 1989–1991. MMWR CDC Surveill Summ 42: 21–30.
[4]
Rosenstein NE, Perkins BA, Stephens DS, Lefkowitz L, Cartter ML, et al. (1999) The changing epidemiology of meningococcal disease in the United States, 1992–1996. J Infect Dis 180: 1894–1901.
[5]
McEllistrem MC, Kolano JA, Pass MA, Caugant DA, Mendelsohn AB, et al. (2004) Correlating epidemiologic trends with the genotypes causing meningococcal disease, Maryland. Emerg Infect Dis 10: 451–456.
[6]
Achtman M (1995) Epidemic spread and antigenic variability of Neisseria meningitidis. Trends Microbiol 3: 186–192.
[7]
Leimkugel J, Hodgson A, Forgor AA, Pfluger V, Dangy JP, et al. (2007) Clonal waves of Neisseria colonisation and disease in the African meningitis belt: eight- year longitudinal study in northern Ghana. PLoS Med 4: e101.
[8]
Moore PS (1992) Meningococcal meningitis in sub-Saharan Africa: a model for the epidemic process. Clin Infect Dis 14: 515–525.
[9]
Chiou AC, Andrade SS, Almeida SC, Zanella RC, Andrade AL, et al. (2008) Molecular assessment of invasive Streptococcus pneumoniae serotype 1 in Brazil: evidence of clonal replacement. J Med Microbiol 57: 839–844.
[10]
Gupta S, Maiden MC, Feavers IM, Nee S, May RM, et al. (1996) The maintenance of strain structure in populations of recombining infectious agents. Nat Med 2: 437–442.
[11]
Schuchat A, Hilger T, Zell E, Farley MM, Reingold A, et al. (2001) Active bacterial core surveillance of the emerging infections program network. Emerg Infect Dis 7: 92–99.
[12]
Salzberg S, Delcher AL, Fasman KH, Henderson J (1998) A decision tree system for finding genes in DNA. J Comput Biol 5: 667–680.
[13]
Delcher AL, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with GLIMMER. Nucleic Acids Res 27: 4636–4641.
[14]
Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964.
[15]
Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, et al. (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35: 3100–3108.
[16]
Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14: 755–763.
[17]
Krogh A, Mian IS, Haussler D (1994) A hidden Markov model that finds genes in E. coli DNA. Nucleic Acids Res 22: 4768–4778.
[18]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410.
[19]
Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783–795.
[20]
Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, et al. (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30: 235–238.
[21]
Juncker AS, Willenbrock H, Von Heijne G, Brunak S, Nielsen H, et al. (2003) Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci 12: 1652–1662.
[22]
Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567–580.
[23]
Delcher AL, Salzberg SL, Phillippy AM (2003) Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics Chapter 10: Unit 10 13:
[24]
Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, et al. (2000) Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287: 1809–1815.
Schoen C, Blom J, Claus H, Schramm-Gluck A, Brandt P, et al. (2008) Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc Natl Acad Sci U S A 105: 3473–3478.
[27]
Parkhill J, Achtman M, James KD, Bentley SD, Churcher C, et al. (2000) Complete DNA sequence of a serogroup A strain of Neisseria meningitidis Z2491. Nature 404: 502–506.
[28]
Peng J, Yang L, Yang F, Yang J, Yan Y, et al. (2008) Characterization of ST-4821 complex, a unique Neisseria meningitidis clone. Genomics 91: 78–87.
[29]
Budroni S, Siena E, Hotopp JC, Seib KL, Serruto D, et al. (2011) Neisseria meningitidis is structured in clades associated with restriction modification systems that modulate homologous recombination. Proc Natl Acad Sci U S A 108: 4494–4499.
[30]
Crabtree J, Angiuoli SV, Wortman JR, White OR (2007) Sybil: methods and software for multiple genome comparison and visualization. Methods Mol Biol 408: 93–108.
[31]
Riley DR, Angiuoli SV, Crabtree J, Dunning Hotopp JC, Tettelin H (2011) Using Sybil for interactive comparative genomics of microbes on the web. Bioinformatics.
[32]
Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, et al. (2006) Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet 2: e21.
[33]
Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al. (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". Proc Natl Acad Sci U S A 102: 13950–13955.
[34]
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31: 3497–3500.
[35]
Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267.
[36]
Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586–1591.
[37]
Egan A, Mahurkar A, Crabtree J, Badger JH, Carlton JM, et al. (2008) IDEA: Interactive Display for Evolutionary Analyses. BMC Bioinformatics 9: 524.
[38]
Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16: 276–277.
[39]
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797.
[40]
Dunning Hotopp JC, Grifantini R, Kumar N, Tzeng YL, Fouts D, et al. (2006) Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes. Microbiology 152: 3733–3749.
[41]
Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, et al. (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287: 1816–1820.
[42]
Jiang HQ, Hoiseth SK, Harris SL, McNeil LK, Zhu D, et al. (2010) Broad vaccine coverage predicted for a bivalent recombinant factor H binding protein based vaccine to prevent serogroup B meningococcal disease. Vaccine 28: 6086–6093.
[43]
Comanducci M, Bambini S, Brunelli B, Adu-Bobie J, Arico B, et al. (2002) NadA, a novel vaccine candidate of Neisseria meningitidis. J Exp Med 195: 1445–1454.
[44]
Hsu CA, Lin WR, Li JC, Liu YL, Tseng YT, et al. (2008) Immunoproteomic identification of the hypothetical protein NMB1468 as a novel lipoprotein ubiquitous in Neisseria meningitidis with vaccine potential. Proteomics 8: 2115–2125.
[45]
Cehovin A, Winterbotham M, Lucidarme J, Borrow R, Tang CM, et al. (2010) Sequence conservation of pilus subunits in Neisseria meningitidis. Vaccine 28: 4817–4826.
[46]
Carbonnelle E, Helaine S, Nassif X, Pelicic V (2006) A systematic genetic analysis in Neisseria meningitidis defines the Pil proteins required for assembly, functionality, stabilization and export of type IV pili. Mol Microbiol 61: 1510–1522.
[47]
Kahler CM, Blum E, Miller YK, Ryan D, Popovic T, et al. (2001) exl, an exchangeable genetic island in Neisseria meningitidis. Infect Immun 69: 1687–1696.
[48]
Bennett JS, Bentley SD, Vernikos GS, Quail MA, Cherevach I, et al. (2010) Independent evolution of the core and accessory gene sets in the genus Neisseria: insights gained from the genome of Neisseria lactamica isolate 020–06. BMC Genomics 11: 652.
[49]
Joseph B, Schwarz RF, Linke B, Blom J, Becker A, et al. (2011) Virulence evolution of the human pathogen Neisseria meningitidis by recombination in the core and accessory genome. PLoS One 6: e18441.
[50]
Didelot X, Urwin R, Maiden MC, Falush D (2009) Genealogical typing of Neisseria meningitidis. Microbiology 155: 3176–3186.
[51]
Castillo-Ramirez S, Harris SR, Holden MT, He M, Parkhill J, et al. (2011) The Impact of Recombination on dN/dS within Recently Emerged Bacterial Clones. PLoS Pathog 7: e1002129.
[52]
Nassif X, Lowy J, Stenberg P, O'Gaora P, Ganji A, et al. (1993) Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol 8: 719–725.
[53]
Rudel T, Scheurerpflug I, Meyer TF (1995) Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature 373: 357–359.
[54]
Power PM, Roddam LF, Dieckelmann M, Srikhanta YN, Tan YC, et al. (2000) Genetic characterization of pilin glycosylation in Neisseria meningitidis. Microbiology 146 ( Pt 4): 967–979.
[55]
Power PM, Roddam LF, Rutter K, Fitzpatrick SZ, Srikhanta YN, et al. (2003) Genetic characterization of pilin glycosylation and phase variation in Neisseria meningitidis. Mol Microbiol 49: 833–847.
[56]
Zhu P, van der Ende A, Falush D, Brieske N, Morelli G, et al. (2001) Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis. Proc Natl Acad Sci U S A 98: 5234–5239.