[1] | Wallach V, Wüster W, Broadley DG (2009) In praise of subgenera: taxonomic status of cobras of the genus Naja Laurenti (Serpentes: Elapidae). Zootaxa 2236: 26–36.
|
[2] | Wüster W, Crookes S, Ineich I, Mané Y, Pook CE, et al. (2007) The phylogeny of cobras inferred from mitochondrial DNA sequences: evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: Naja nigricollis complex). Mol Phylogenet Evol 45: 437–453.
|
[3] | Wüster W, Thorpe RS (1992) Asiatic cobras: population systematics of the Naja naja species complex (Serpentes: Elapidae) in India and Central Asia. Herpetologica 48: 69–85.
|
[4] | Szyndlar Z, Rage JC (1990) West Palearctic cobras of the genus Naja (Serpentes: Elapidae): interrelationships among extinct and extant species. Amphibia-Reptilia 11: 385–400.
|
[5] | Ineich I (1995) Etat actuel de nos connaissances sur la classification des serpents venimeux. Bull Soc Herpétol France 1995 75–76: 7–24.
|
[6] | Minton SA (1986) Origins of poisonous snakes: evidence from plasma and venom proteins. In: Harris JB, editor. Natural toxins: animal, plant and microbial. Oxford: Clarendon Press. pp. 3–21.
|
[7] | Wüster W, Golay P, Warrell DA (1997) Synopsis of recent developments in venomous snake systematics. Toxicon 35: 319–340.
|
[8] | Zhao EM (1998) Naja atra Cantor. In: Zhao EM, editor. China red data book of endangered animals (Amphibia and Reptilia). Beijing: Science Press. pp. 274–276.
|
[9] | Lin LH, Li H, An H, Ji X (2008) Do temperature fluctuations during incubation always play an important role in shaping the phenotype of hatchling reptiles? J Therm Biol 33: 193–199.
|
[10] | Tan QY, Guo TG, Gong XG, Gong XJ, Guo DZ, et al. (2009) Artificial domestication and breeding technology of Naja atra. J Snake 21: 183–186.
|
[11] | Tammeleht E, Remm J, Korsten M, Davison J, Tumanov I, et al. (2010) Genetic structure in large, continuous mammal populations: the example of brown bears in northwestern Eurasia. Mol Ecol 19: 5359–5370.
|
[12] | Huang S, He SP, Peng ZG, Zhao K, Zhao EM (2007) Molecular phylogeography of endangered sharp-snouted pitviper (Deinagkistrodon acutus; Reptilia, Viperidae) in mainland China. Mol Phylogenet Evol 44: 942–952.
|
[13] | Lukoschek V, Waycott M, Keogh JS (2008) Relative information content of polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic structure in the olive sea snake, Aipysurus laevis. Mol Ecol 17: 3062–3077.
|
[14] | Chiucchi JE, Gibbs HL (2010) Similarity of contemporary and historical gene flow among highly fragmented populations of an endangered rattlesnake. Mol Ecol 19: 5345–5358.
|
[15] | Ding L, Gan XN, He SP, Zhao EM (2011) A phylogeographic, demographic and historical analysis of the short-tailed pit viper (Gloydius brevicaudus): evidence for early divergence and late expansion during the Pleistocene. Mol Ecol 20: 1905–1922.
|
[16] | Sallaberry-Pincheira N, Garin CF, González-Acu?a D, Sallaberry MA, Vianna JA (2011) Genetic divergence of Chilean long-tailed snake (Philodryas chamissonis) across latitudes: conservation threats for different lineages. Divers Distrib 17: 152–162.
|
[17] | Huang S, Liu SY, Guo P, Zhang YP, Zhao EM (2009) What are the closest relatives of the hot-spring snakes (Colubridae, Thermophis), the relict species endemic to the Tibetan Plateau? Mol Phylogenet Evol 51: 438–446.
|
[18] | Avise JC (2000) Phylogeography: the history and formation of species. Cambridge: Harvard University Press.
|
[19] | Birky CW, Maruyama T, Fuerst PA (1983) An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. Genetics 103: 513–527.
|
[20] | Brown WM, George MJ, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76: 1967–1971.
|
[21] | Ballard JWO, Kreitman M (1995) Is mitochondrial DNA a strictly neutral marker? Trends Ecol Evol 10: 485–488.
|
[22] | Angers B, Bernatchez L (1998) Combined use of SMM and non-SMM methods to infer fine structure and evolutionary history of closely related brook charr (Salvelinus fontinalis, Salmonidae) populations from microsatellites. Mol Biol Evol 15: 143–159.
|
[23] | Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11: 155–165.
|
[24] | Pritchard JK, Wen W (2004) Documentation for structure software: Version 2. Available from http://pritch.bsd.uchicago.edu/software/?readme_structure2.pdf.
|
[25] | Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9: 552–569.
|
[26] | Tzika AC, Remy C, Gibson R, Milinkovitch MC (2009) Molecular genetic analysis of a captive-breeding program: the vulnerable endemic Jamaican yellow boa. Conser Genet 10: 69–77.
|
[27] | Lin LH, Zhao Q, Ji X (2008) Conservation genetics of the Chinese cobra (Naja atra) using mitochondrial DNA sequences. Zool Sci 25: 888–893.
|
[28] | Musiani M, Leonard JA, Cluff HD, Gates CC, Mariani S, et al. (2007) Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Mol Ecol 16: 4149–4170.
|
[29] | Epperson BK (2003) Geographical genetics: monographs in population biology, 38. Princeton: Princeton University Press.
|
[30] | Wang JT, Wang PS (1980) Relationship between sea-level changes and climatic fluctuations in east China since late Pleistocene. Acta Geogr Sin 35: 299–313.
|
[31] | Chen XD, Fan SQ (1988) Late quaternary deposition and environment in the sea area of Northwest Hainan Island. Tropical Ocean 7: 39–47.
|
[32] | Zhao HT, Zhang QM, Song CJ (1999) Geomorphology and environment of the south China coast and the south China sea islands. Beijing: Science Press.
|
[33] | Lin LH, Ji X, Diong CH, Du Y, Lin CX (2010) Phylogeography and population structure of the Reevese's butterfly lizard (Leiolepis reevesii) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 56: 601–607.
|
[34] | Ji X, Wang ZW (2005) Geographic variation in reproductive traits and trade-offs between size and number of eggs of the Chinese cobra (Naja atra). Biol J Linn Soc 85: 27–40.
|
[35] | Ji X, Chen HL, Du WG, Zhu BQ (2002) Radiotelemetry of thermoregulation and thermal tolerance on Chinese cobras (Naja atra) overwintering in a laboratory enclosure. Acta Zool Sin 48: 591–598.
|
[36] | Li JJ, Shu Q, Zhou SZ, Zhao ZJ, Zhang JM (2004) Review and prospects of quaternary glaciation research in China. J Glaciol Geocryol 26: 235–243.
|
[37] | Fu JZ, Weadick CJ, Zeng XM, Wang YZ, Liu ZJ, et al. (2005) Phylogeographic analysis of the Bufo gargarizans species complex: a revisit. Mol Phylogenet Evol 37: 202–213.
|
[38] | Moritz C (1994) Defining ‘Evolutionarily Significant Units’ for conservation. Trends Ecol Evol 9: 373–375.
|
[39] | Szaro RC (2008) Endangered species and nature conservation: science issues and challenges. Integr Zool 3: 75–82.
|
[40] | Lin HC, Li SH, Fong J, Lin SM (2008) Ventral coloration differentiation and mitochondrial sequences of the Chinese cobra (Naja atra) in Taiwan. Conser Genet 9: 1089–1097.
|
[41] | Lin LH, Mao LX, Luo X, Qu YF, Ji X (2011) Isolation and characterization of microsatellite loci in the Chinese cobra Naja atra (Elapidae). Int J Mol Sci 12: 4435–4440.
|
[42] | Goode M, Rodrigo AG (2007) SQUINT: A multiple alignment program and editor. Bioinformatics 23: 1553–1555.
|
[43] | Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.
|
[44] | Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564–567.
|
[45] | Nei M (1987) Molecular evolutionary genetics. New York: Columbia University Press.
|
[46] | Swofford DL (2003) PAUP* phylogenetic analysis using parsimony (*and other methods), Version 4. Massachusetts: Sinauer Associates; 2003.
|
[47] | Posada D, Crandall K (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.
|
[48] | Akaike H (1974) A new look at the statistical model identification. IEEE T Automat Contr 19: 716–723.
|
[49] | Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intra-specific phylogenies. Mol Biol Evol 16: 37–48.
|
[50] | Cassens I, Van Waerebeek K, Best PB, Crespo EA, Reyes J, et al. (2003) The phylogeography of dusky dolphins (Lagenorhynchus obscurus): a critical examination of network methods and rooting procedure. Mol Ecol 12: 1781–1792.
|
[51] | Rogers AR (1995) Genetic evidence for a Pleistocene population explosion. Evolution 49: 608–615.
|
[52] | Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66: 591–600.
|
[53] | Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.
|
[54] | Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915–925.
|
[55] | Huang S, Huang JT (2003) Artificial propagation of the five-paced pitviper (Deinagkistrodon acutus). Acta Zool Sin 49: 854–857.
|
[56] | Macey JR, Schulte JA II, Ananjeva NB, Larson A, Rastegar-Pouyani N, et al. (1998) Phylogenetic relationships among agamid lizards of the Laudakia caucasia complex: testing hypotheses of fragmentation and an area cladogram for the Iranian Plateau. Mol Phylogenet Evol 10: 118–131.
|
[57] | Macey JR, Schulte JA II, Larson A, Fang ZL, Wang YZ, et al. (1998) Phylogenetic relationships of toads of the Bufo bufo complex from the eastern escarpment of the Tibetan Plateau: a case of vicariance and dispersal. Mol Phylogenet Evol 9: 80–87.
|
[58] | Wüster W, Salom?o MDG, Quijada-Mascare?as JA, Thorpe RS, BBBSP (2002) Origins and evolution of the South American pitviper fauna: evidence from mitochondrial DNA sequence analysis. In: Schuett GW, H?ggren MH, Douglas ME, Greene HW, editors. Biology of vipers. Utah: Eagle Mountain Publishing. pp. 111–128.
|
[59] | Ho SYW, Larson G (2006) Molecular clocks: when times are a-changin'. Trends Genet 22: 79–83.
|
[60] | Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4: 535–538.
|
[61] | Glaubitz JC (2004) CONVERT: a user friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4: 309–310.
|
[62] | Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Updated from Goudet (1995), available from http://www.unil.ch/izea/softwares/fstat.?html.
|
[63] | Rousset F (2008) GENEPOP'007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8: 103–106.
|
[64] | Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457–462.
|
[65] | Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264–279.
|
[66] | Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–1587.
|
[67] | Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959.
|
[68] | Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620.
|
[69] | Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89: 238–247.
|
[70] | Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144: 2001–2014.
|
[71] | Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90: 502–503.
|